

US010701399B2

(12) United States Patent

Schueuer et al.

(54) LAYERED REPRESENTATION AND **DELIVERY OF HIGH DYNAMIC RANGE** VIDEO

- (71) Applicants: DOLBY LABORATORIES LICENSING CORPORATION, San Francisco, CA (US); DOLBY INTERNATIONAL AB, Amsterdam, Zuidoost (NL)
- (72) Inventors: Klaas Heinrich Schueuer, Berlin (DE); David Brooks, Mountain View, CA (US); Satoshi Teshigawara, Cupertino, CA (US); Tao Chen, Palo Alto, CA (US)
- (73) Assignces: Dolby Laboratories Licensing Corporation, San Francisco, CA (US); Dolby International AB, Amsterdam Zuidoost (NL)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 16/538,485
- (22) Filed: Aug. 12, 2019
- (65)**Prior Publication Data**

US 2019/0373290 A1 Dec. 5, 2019

Related U.S. Application Data

(63) Continuation of application No. 15/764,308, filed as application No. PCT/US2016/059862 on Nov. 1, 2016, now Pat. No. 10,462,491. (Continued)

(51) Int. Cl. H04N 19/65 (2014.01)H

04/11/05	(2017.01)
04N 19/30	(2014.01)
	(Continued)

US 10,701,399 B2 (10) Patent No.:

(45) Date of Patent: Jun. 30, 2020

- (52) U.S. Cl. CPC H04N 19/65 (2014.11); H04N 19/30 (2014.11); H04N 19/463 (2014.11); H04N 7/0152 (2013.01)
- Field of Classification Search (58)CPC H04N 19/65; H04N 19/30; H04N 19/463 See application file for complete search history.

(56)**References** Cited

U.S. PATENT DOCUMENTS

6,993,705 B1* 1/2006 MacLellan G11B 20/1833 714/800

11/2013 Ballestad 8,593,480 B1 (Continued)

FOREIGN PATENT DOCUMENTS

CN	101198190	6/2008
CN	103609111	2/2014
	(Coi	ntinued)

OTHER PUBLICATIONS

Audio Visual Application Format Specifications for BD-ROM Version 3.0, White paper Blu-Ray Disc Read-only Format (Ultra HD Blu-ray), Blu-Ray Disc Association, Jul. 2015.

(Continued)

Primary Examiner - Jonathan R Messmore

ABSTRACT (57)

In a method to reconstruct a high dynamic range video signal, a decoder receives a base layer standard dynamic range video signal, an enhancement layer video signal, and a metadata bitstream for a reference processing unit. A decoder reconstructs a high-dynamic range video output signal based on the base layer video signal, the enhancement layer video signal, and the data syntax and metadata specified by the metadata bitstream.

10 Claims, 6 Drawing Sheets

Related U.S. Application Data

- (60) Provisional application No. 62/249,474, filed on Nov. 2, 2015.
- (51) Int. Cl. *H04N 19/463* (2014.01) *H04N 7/015* (2006.01)

(56) **References Cited**

U.S. PATENT DOCUMENTS

2005/0213593 A1*	9/2005	Anderson H04L 29/06027
2014/0241205 41*	11/2014	370/419 Qu H04N 19/70
2014/0541505 AI	11/2014	375/240.26
2015/0117551 A1	4/2015	Su
2015/0256860 A1	9/2015	Kunkel

FOREIGN PATENT DOCUMENTS

EP	2866450	4/2015
JP	1174868	3/1999
JP	2001025010	1/2001
JP	2015503873	2/2015
WO	2012006299	1/2012
WO	2014176019	10/2014
WO	20150117551	8/2015

OTHER PUBLICATIONS

CEA-861-F, A DTV Profile for Uncompressed High Speed Digital Interfaces.

 $\label{eq:high-Definition} High-Definition Multimedia Interface^{\texttt{TM}} Specification, version 1.4b, available from http://www.hdmi.org.$

High-Definition Multimedia Interface[™] Specification, version 2.0, available from http://www.hdmi.org.

ISO/IEC 13818-1:2013, Information Technology—Generic Coding of Moving Pictures and Associated Audio Information: Systems, available from www.iso.org.

ITU—commendation BT.709, Parameter Values for the HDTV Standards for Production and International Program Exchange, available from http://www.itu.int.

ITU-R BT.1886 "Reference Electro-Optical Transfer Function for Flat Panel Displays Used in HDTV Studio Production" Mar. 2011, pp. 1-7.

TTU-R Recommendation BT.2020, Parameter Values for Ultra-High-Definition Television Systems for Production and International Program Exchange, available from http://www.itu.int.

ITU-T H.265 (Oct. 2014), High-Efficiency Video Coding, available at http://www.itu.int.

SMPTE ST 2084:2014, High Dynamic Range Electro-Optical Transfer Function of Mastering Reference Displays, Aug. 16, 2014.

SMPTE ST 2086:2014, Mastering Display Color Volume Metadata Supporting High Luminance and Wide Color Gamut Images, Oct. 13, 2014.

* cited by examiner

FIG. 1

FIG. 5B

LAYERED REPRESENTATION AND DELIVERY OF HIGH DYNAMIC RANGE VIDEO

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/764,308, filed on Mar. 28, 2018, which is United States National Stage of International Application No. PCT/US2016/059862, filed Nov. 1, 2016, which claims the benefit of priority from U.S. Provisional Application No. 62/249,474, filed on Nov. 2, 2015, each of which is incorporated by reference in its entirety.

TECHNOLOGY

The present invention relates generally to images. More particularly, an embodiment of the present invention relates 20 to the layered representation and delivery of high dynamic range video.

BACKGROUND

The development and adoption of international audio and video coding standards, such as MPEG-2, MPEG-4, H.264, and more recently H.265 (also known as HEVC), has been instrumental for the rapid development, adoption, and proliferation of standard-based devices and communication 30 standards, such as DVD players, Blu-Ray players, and the ATSC and DVB standards for digital television broadcasting.

Display technologies being developed by Dolby Laboratories, Inc., and others are able to reproduce images having 35 high dynamic range (HDR) and wide color gamut. Such displays can reproduce images that more faithfully represent real-word scenes than conventional displays of standard dynamic range (SDR).

As used herein, the term 'dynamic range' (DR) may relate 40 to a capability of the human visual system (HVS) to perceive a range of intensity (e.g., luminance, luma) in an image, e.g., from darkest darks (blacks) to brightest whites (i.e., highlights). In this sense, DR relates to a 'scene-referred' intensity. DR may also relate to the ability of a display device to 45 adequately or approximately render an intensity range of a particular breadth. In this sense, DR relates to a 'displayreferred' intensity. Unless a particular sense is explicitly specified to have particular significance at any point in the description herein, it should be inferred that the term may be 50 used in either sense, e.g. interchangeably.

As used herein, the term high dynamic range (HDR) relates to a DR breadth that spans the some 14-15 orders of magnitude of the human visual system (HVS). In practice, the DR over which a human may simultaneously perceive an 55 extensive breadth in intensity range may be somewhat truncated, in relation to HDR. As used herein, the terms enhanced dynamic range (EDR) or visual dynamic range (VDR) may individually or interchangeably relate to the DR that is perceivable within a scene or image by a human 60 visual system (HVS) that includes eye movements, allowing for some light adaptation changes across the scene or image. As used herein, EDR may relate to a DR that spans 5 to 6 orders of magnitude. Thus while perhaps somewhat narrower in relation to true scene referred HDR, EDR none- 65 theless represents a wide DR breadth and may also be referred to as HDR.

2

In practice, images comprise one or more color components (e.g., luma Y and chroma Cb and Cr) wherein each color component is represented by a precision of n-bits per pixel (e.g., n=8). Using linear luminance coding, images where n≤8 (e.g., color 24-bit JPEG images) are considered images of standard dynamic range, while images where n>8 may be considered images of enhanced dynamic range. EDR and HDR images may also be stored and distributed using high-precision (e.g., 16-bit) floating-point formats, such as the OpenEXR file format developed by Industrial Light and Magic.

A reference electro-optical transfer function (EOTF) for a given display characterizes the relationship between color values (e.g., luminance) of an input video signal to output screen color values (e.g., screen luminance) produced by the display. For example, ITU Rec. ITU-R BT. 1886, "Reference electro-optical transfer function for flat panel displays used in HDTV studio production," (March/2011), which is included herein by reference in its entity, defines the reference EOTF for flat panel displays based on measured characteristics of the Cathode Ray Tube (CRT). Given a video stream, information about its EOTF is typically embedded in the bit stream as metadata. As used herein, the term "metadata" relates to any auxiliary information that is transmitted as part of the coded bitstream and assists a decoder to render a decoded image. Such metadata may include, but are not limited to, color space or gamut information, reference display parameters, and auxiliary signal parameters, as those described herein.

Most consumer desktop displays currently support luminance of 200 to 300 cd/m^2 or nits. Most consumer HDTVs range from 300 to 500 nits with new models reaching 1000 nits (cd/m²). Such conventional displays thus typify a lower dynamic range (LDR), also referred to as a standard dynamic range (SDR), in relation to HDR or EDR. As the availability of HDR content grows due to advances in both capture equipment (e.g., cameras) and HDR displays (e.g., the PRM-4200 professional reference monitor from Dolby Laboratories), HDR content may be color graded and displayed on HDR displays that support higher dynamic ranges (e.g., from 1,000 nits to 5,000 nits or more). Such displays may be defined using alternative EOTFs that support high luminance capability (e.g., 0 to 10,000 nits). An example of such an EOTF is defined in SMPTE ST 2084:2014 "High Dynamic Range EOTF of Mastering Reference Displays,' which is incorporated herein by reference in its entirety. In general, without limitation, the methods of the present disclosure relate to any dynamic range higher than SDR. As appreciated by the inventors here, improved techniques for the coding, delivery, and decoding of high-dynamic range images are desired.

The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section. Similarly, issues identified with respect to one or more approaches should not assume to have been recognized in any prior art on the basis of this section, unless otherwise indicated.

BRIEF DESCRIPTION OF THE DRAWINGS

An embodiment of the present invention is illustrated by way of example, and not in way by limitation, in the figures

25

of the accompanying drawings and in which like reference numerals refer to similar elements and in which:

FIG. 1 depicts an example system for the coding, delivery, and display of HDR video according to an embodiment of this invention;

FIG. 2 depicts an example process for dual-layer video decoding of HDR video according to an embodiment of this invention:

FIG. 3 depicts an example process for base layer process-10ing in HDR video decoding according to an embodiment of this invention:

FIG. 4 depicts an example process for enhancement layer processing in HDR video decoding according to an embodiment of this invention; and

FIG. 5A and FIG. 5B depict example processes for graphics overlay on HDR video according to an embodiment of this invention.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Layered representation and delivery of high dynamic range video (HDR) is described herein. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are not described in exhaustive detail, in order to avoid unnecessarily occluding, obscuring, or 30 obfuscating the present invention.

Overview

Example embodiments described herein relate to the layered representation and delivery of high-dynamic range 35 images. In a method for generating high-dynamic range video data with a decoder, the decoder:

receives reference processing data;

- parses a cyclic redundancy check (CRC) parameter from 40 the reference processing data;
- extracts from the reference processing data at least an RPU data header, RPU data payload data, and an RPU-alignment-zero-bit flag;
- computes a CRC value on the entire reference processing data excluding the CRC parameter;
- compares the CRC value with the CRC parameter to detect an error;

receives a base-layer image;

receives an enhancement layer image; and

combines the base-layer image and the enhancement layer $^{50}\,$ image based on the reference processing data to generate the output image.

Terms and Abbreviations

Abbreviation	Description
API	Application programming interface
$_{\rm BL}$	Base layer
EL	Enhancement layer
HDMI	High-Definition Multimedia Interface
LSB	Least-significant bit
LUT	Lookup table
MMR	Multivariate multiple regression
MSB	Most-significant bit
NAL	Network Abstraction Layer

4

-continued

Abbreviation	Description
NLQ	Nonlinear quantization
CRC	Cyclic redundancy check

Technology Overview

Dolby VisionTM for consumer applications is an end-toend technology suite that enables the creation and distribution of content mastered with a high dynamic range and wide color gamut. Dolby Vision display management matches the capability of a given television by using a series of algorithms to map the signal to any Dolby Vision consumer television. This creates an optimal and seamless video experience for the viewer. As used herein, the term "Dolby Vision video" denotes EDR or HDR video.

FIG. 1 depicts an example system for the coding, delivery, and display of HDR video according to an embodiment of this invention. As depicted in FIG. 1, in an embodiment of a system for Dolby Vision consumer applications, a Dolby Vision video signal (107) is sent from a Dolby Vision source (105) (e.g., a Dolby Vision capable Ultra-HD Blu-ray player and the like) to a Dolby Vision sink (110) (e.g., a television, a monitor, and the like) via a digital interface (e.g., HDMI).

FIG. 2 depicts an example processing pipeline for the decoding and playback of Dolby Vision content on an HDR-capable media player according to an embodiment. The video elementary stream (EL) splitter block (205) strips apart the enhancement video data (207) and the metadata information (209) contained in the Dolby Vision EL video stream (202). Given a Dolby Vision input stream (202) (see [9]), the output of (205) consists of an EL video elementary stream (207), and a Dolby Vision metadata bitstream (209).

The metadata parser (210) decodes Dolby Vision metadata from the bitstream.

The input metadata bitstream contains:

- Dolby Vision specific metadata (i.e. composer (220) prediction coefficients)
- Static metadata as defined in SMPTE 2086 in Ref. [7]. Dynamic scene-based metadata (e.g., as may be defined in WD SMPTE ST 2094).

The output (212) contains a composing metadata structure and a display management metadata structure which are 45 described in more detail later on.

The back-end control block (215) is responsible for configuration and control of all composer and display management processing blocks.

- The inputs are:
- BL video decoder output sample descriptor queue (225) EL video decoder output sample descriptor queue (230) Dolby Vision metadata parser output sample descriptor queue (235)

Dolby Vision application control interface parameters

55 The outputs are:

60

The values of the composer hardware registers

- The values of the display management hardware registers and look-up tables
- The controlling signal (217) of the Dolby Vision HDMI hardware block.

The Dolby Vision composer (220) accepts synchronized decoded BL (BDMV HDR) and EL video frames, metadata information, and back-end control block data, and uses the metadata to reconstruct Dolby Vision video frames.

65 The inputs are:

A BL 10-bit YUV420 signal (242) from a BL video decoder (240) buffer

20

- An EL 10-bit YUV420 signal (247) from an EL video decoder (245) buffer
- A metadata structure containing composing coefficients, parameters, and others

The output is a reconstructed Dolby Vision signal YUV420 5 buffer (222). More detailed information about the Dolby Vision composer is provided later on.

Dolby Vision Enhancement Layer Definitions

A Dolby Vision EL video bitstream (202) consists of one MPEG HEVC video stream with embedded Dolby Vision metadata. The stream is a byte stream of NAL units as defined in Annex B of Ref. [3].

The input of a video elementary stream splitter is a Dolby Vision EL video bitstream (202). The video elementary 15 stream splitter application (205) splits the combined EL video and metadata elementary stream input into two output streams:

The EL video elementary stream (207)

A metadata bitstream (209)

To identify each individual stream in a video elementary stream, the splitter searches the Dolby Vision video elementary byte stream for the 3-byte NAL start code 0x000001 or the 4-byte NAL start code 0x0000001. The first two bytes immediately following the start code identify the layer to ²⁵ which the current NAL unit belongs, as listed in Table 1.

TABLE 1

Dolby Vision Enhan	cement Layer NAL unit type	30
Layer Description	First Two Bytes After Start Code	_
EL video NAL unit Dolby Vision metadata	!0x7C01 0x7C01	_
NAL unit		35

Note:

The BL video elementary stream NAL unit bypasses the video elementary stream splitter.

An EL video elementary stream NAL unit can be passed to the EL video decoder without any change.

For the Dolby Vision metadata bitstream NAL unit, the first two bytes (0x7C01) immediately following the start code must be removed before they are sent to the Dolby Vision metadata parser application. A complete definition of the Dolby Vision metadata bitstream syntax and semantics ⁴⁵ can be found in Annex A.

Dolby Vision metadata, as defined in Annex A and conforming to Ref. [9], are subject to the requirements listed in Table 2.

TABLE 2

	Metadata Setup	
Metadata	Setting	55
vdr_rpu_profile vdr_rpu_level num_y_partitions_minus1 num_x_partitions_minus1 num_pivots_minus2[0]	1 0 0 For polynominal prediction: Must be less or equal to 7	60
num_pivots_minus2[1] num_pivots_minus2[2]	For MMR prediction: Must be less or equal to 3 For power prediction: must be equal to 0 For polynominal prediction: Must be less or equal to 3 For MMR or power prediction: Must be equal to 0	65

6

TABLE 2-continued

	Metadata Setup			
	Metadata	Setting		
	nlq_num_pivots_minus2	0		
	prev_vdr_rpu_id	Must be no greater than 0 if this syntax element is present		
	BL_bit_depth_minus8	2		
	EL_bit_depth_minus8	2		
)	Vdr_bit_depth_minus8	An integer no greater than 6		
	spatial_resampling_filter_flag	0		
	mapping_color_space	0 (YCbCr)		
	mapping_idc[0]	Set to 0 when		
		coefficient_data_type is equal to 0		
	mapping_idc[1]	Must be 0 or 1 when		
	mapping_idc[2]	coefficient_data_type is equal to 0		
,	coefficient_log2_denom	An integer no greater than 23		
	nlq_method_idc	Set to 0 when		
		coefficient_data_type is equal to 0		
	BL_chroma_format_idc	0		
	EL_chroma_format_idc	0		
)	mapping_chroma_format_idc	0		

Dolby Vision Composer Definition

The Dolby Vision composer (220) accepts decoded BL and EL video frames, metadata information, and back-end control block data, and uses the metadata to reconstruct Dolby Vision video frames.

Composer IO Definitions

Composer Inputs

Decoded Base Layer Video Frame

The decoded BL video input conforms to the following values:

The BL video signal is called S_{cmp} , where $0 \le cmp \le 2$ represents the three color channels.

The video format is YCbCr 4:2:0.

The video resolution is 3840×2160 or 1920×1080.

The bit depth is equal to 10 bit.

The EOTF is according to SMPTE ST 2084 in Ref. [6]. Decoded Enhancement Layer Video Frame

The decoded EL video input conforms to the following 40 values:

The enhancement-layer video signal is called R_{cmp} , where $0 \le cmp \le 2$ represents the three color channels.

The video format is YCbCr 4:2:0.

The video resolution is 1920×1080

The bit depth is equal to 10 bit.

Composer Metadata

The coefficients and parameters used in the metadata for the Dolby Vision composer are as follows.

Coefficient_log_2_denom

This parameter specifies the number of fractional bits for Dolby Vision decoding coefficients if coefficient_ data_type=0.

BL_bit_depth

50

This parameter specifies the bit depth of the BL video signal. It is derived by BL_bit_depth= BL_bit_depth_minus8+8, where BL_bit_depth_minus8 is as defined in Ref. [3]. For Ultra-HD Blu-ray BL_bit_depth must be equal to 10.

EL_bit_depth

This parameter specifies the bit depth of the EL video signal. It is derived by EL_bit_depth= EL_bit_depth_minus8+8, where EL_bit_depth_minus8 is as defined in Ref. [3]. For Ultra-HD Blu-ray EL_bit_depth must be equal to 10.

65 vdr_bit_depth

This parameter specifies the bit depth of the reconstructed Dolby Vision video signal. It is derived by

40

55

vdr_bit_depth=vdr_bit_depth_minus8+8, where vdr_bit_ depth_minus8 is as defined in Ref. [3]. mapping_idc

This parameter specifies the prediction method for each color channel of the BL. For the luma channel, only 0 is 5 allowed. For the chroma channels, mapping_idc must be in the range of 0 to 1.

spatial_resampling_filter_flag

For Ultra-HD Blu-ray this flag must be equal to 0. spatial_resampling_explicit_filter_flag

For Ultra-HD Blu-ray this flag must be equal to 0. Base layer Prediction Coefficients

For the Dolby Vision for Ultra-HD Blu-ray decoder, the prediction method is a piece-wise polynomial mapping up to 15 the second order. The maximum number of channel segments allowed is eight.

The polynomial function coefficients are {fpoly_coef_ c_{ii} }, where $0 \le c \le 2$ (c is the color channel index), $0 \le j \le 7$ (j is the segment index) and $0 \le i \le 2$ (i is the coefficient order): 20

- fpoly_coef_{c i} are the coefficients for each color channel c, each segment j and each order i.
- fpok_coef_c,i,i=(poly_coef_int[0] [0] [c] [j] [i]<<coefficient_log 2_denom)|poly_coef[0] [0][c] [j] [i]

Each polynomial coefficient is a real number with a bit 25 depth of coefficient_log 2_denom+7, as specified in the following list:

Bit[coefficient_log 2_denom+6]:Signbit

- Bit[coefficient_log 2_denom+5:coefficient_log 2_denom-]: Integer part 30
- Bit[coefficient_log 2_denom-1:0]:Fractional part

Alternatively, the chroma channels can be predicted using a multiple multivariate regression function up to third order. The multi-variate multiple regression coefficients are $\{m_{c,i}\}$, where $1 \le c \le 2$ (c is the color channel index) and $0 \le i \le 21$ (i is 35 layer (BL) according to an embodiment. The decoded BL the coefficient number):

 $m_{c,0}$ is the multivariate regression constant.

m_{c,0}=(mmr_constant_int[0] [0] [j] [0]<<coefficient_log 2_denom)|mmr_constant[0] [0] [j] [0]

 $m_{c,i}$ are the multivariate regression coefficients.

 $m_{c,i} = (mmr_coef_int[0] [0] [j] [0] [m] [n] \ll coefficient_$ log 2_denom)|mmr_coef[0] [0] [j] [0] [m] [n]

i=7*(m-1)+n with $1\le m\le 3$ and $1\le n\le 7$.

Each polynomial coefficient is a real number with a bit depth of coefficient_log 2_denom+17, as specified in the 45 Dolby Vision for Ultra-HD Blu-ray decoder, the prediction following list:

Bit[coefficient_log 2_denom+16]:Sign bit

Bit[coefficient_log 2_denom+15:coefficient_log 2_denom]: Integer_part

Bit[coefficient_log 2_denom-1:0]:Fractional part

Note: pivot_value, poly_coef_int, poly_coef, mmr_constant_int, mmr_constant, mmr_coef_int, and mmr_coef are decoding metadata syntax elements, as defined in Ref. [11].

Enhancement Layer Inverse Quantization Coefficients

For the Dolby Vision for Ultra-HD Blu-ray decoder, the inverse quantization method is linear with dead zone. The maximum number of segments allowed in is one.

The linear-with-dead-zone function coefficients of the luma and chroma channels are

- {S[j], M[j], T[j], Rmax[j]}, where $0 \le j \le 2$ (j is the color channel index) and i=0 (i is the segment index):
- S[j] is the slope coefficient of the linear-with-dead-zone function.
- S[j]=((linear_deadzone_slope_int[0] [0] [i] [j]<<coeffi- 65 cient_log 2_denom)llinear_deadzone_slope[0] [0] [i] [j]).

M[j] is the offset coefficient of the linear-with-dead-zone function.

M[j]=nlq_offset[0] [0] [i] [j].

- T[j] is the threshold coefficient of the linear-with-deadzone function.
- T[j]=((linear_deadzone_threshold_int[0] [0] [i] [j]<<coefficient_log 2_denom)llinear_deadzone_threshold[0] [0] [i] [i]).
- Rmax[j] is the maximum enhancement layer value coefficient of the linear-with-dead-zone function.
- Rmax[j]=((vdr_in_max_int[0] [0] [i] [j]<<coefficient_log 2_denom)|vdr_in_max[0] [0] [i] [j]).
- M[j] is an integer with a value in the range of $[0,2^{EL_bit_depth}-1]$ and a bit depth of EL_bit_depth.

Other inverse quantization coefficients are real numbers with bit depths of coefficient_log 2_denom+2, as specified in the following list:

Bit[coefficient_log 2_denom+1]:Sign bit

Bit[coefficient_log 2_denom]: Integer part

Bit[coefficient log 2 denom-1:0]:Fractional part

Note: linear_deadzone_slope_int, linear_deadzone_slope, nlq_offset, linear_deadzone_threshold_int, linear_deadzone_threshold, vdr_in_max_int, and vdr_in_max are decoding metadata syntax elements, as defined in Ref. [11]. Composer Output

Composer output conforms to the following values:

The output is a Dolby Vision signal called V_{cmp} , where $0 \le cmp \le 2$ represents the three color channels.

The video format is YCbCr 4:2:0.

The resolution is 3840×2160 or 1920×1080.

Bit depth is equal to vdr_bit_depth.

Composer Decoding Process

Base-Layer Decoding Process

FIG. 3 depicts an example decoding process of the base samples (242) are given by the decoding process (240) of the baseline video stream (203). The decoded BL signal (242) is mapped to the dynamic range of the EL signal domain using pre-selected prediction coefficients signaled in the Dolby Vision metadata (212). Predicted BL signal's decimal values are in the range of [0,1). The predicted BL signal (312) will be added to the inverse quantized EL signal (304) to reconstruct the HDR Dolby Vision signal (222).

Different prediction methods can be applied. For the method for the luma channel is a piece-wise polynomial up to the second order. For the chroma channels, the prediction method is a piece-wise polynomial up to the second order or multivariate multiple regression up to the third order. 50 Base Layer Inverse Mapping

To generate the prediction from BL to EL, the mapping from BL signal range to EL signal range is done with a prediction curve consisting of multiple segments. The pivots (or boundaries) of these segments are derived as follows.

The value of num_pivots_minus2 indicates how many pivot points exist for the component cmp of the current BL video frame. The value of each pivot point is stored in a sorted array pivot_value[cmp] [], where pivot_value[cmp] [0] is a low end-point value and pivot_value[cmp] 60 [num_pivots_minus2[cmp]+1] is a high end-point value.

To find the pivot values for a given sample Scmp, the pivot_value array is traversed until the sample value lies between two pivot values; this determines the segment. The sample is capped at the low- and high-end pivot values. Mapping_Polynomial Method

This method is applied to the luma component or when mapping_idc is equal to zero. The resulting prediction from

15

20

25

40

BL is constructed in a piecewise manner. Inputs are the BL signal of the current component and the pivot array introduced in the previous section. The variables poly_order_minus1 and linear_interp_flag are held in the Dolby Vision metadata.

When linear_interp_flag is 1, linear interpolation is performed between the two pivot values of the current segment j where the BL pixel value S is located. Otherwise, full polynomial prediction for an N-order polynomial is calculated according to

$$R = \sum_{i=0}^{N} \text{fpoly_coef}_{j,i} * (S/2^{BL_bit_depth})^{i},$$
(1)

where fpoly_coef are prediction coefficients signaled in the Dolby Vision metadata. The calculation can be carried out in fixed point or 32-bit floating point. Mapping_MMR Method

This mapping applies to chroma only. In a first step, the BL luma component must be downsampled by using the downsampling filters specified in the following equations before performing the multivariate multiple regression prediction process.

Horizontal downsampling filter:

$$\begin{array}{l} r[n] = Clip3(0, (y[2n-1]+2*y[2n]+y[2n+1]+2)>>2, \\ 1023); \end{array}$$

Vertical downsampling filter:

$$r[n]$$
=Clip3(0, ($y[2n]+y[2n+1]+1$)>>1, 1023); (3)

Horizontal downsampling is applied first, followed by vertical downsampling. If the pixel used in equations 2 and 3 is out of the picture boundary, it is set to the value of the pixel at the picture boundary. That is, image edges are ³⁵ handled by pixel replication. Values of S_{cmp} are clamped to highest and lowest pivot value respectively. Then, a multiple multivariate regression is performed:

$$R = m_0 + \sum_{i=0}^{N} \left(\frac{m_1[i] \cdot S_0^i + m_2[i] \cdot S_1^i + m_3[i] \cdot S_2^i + m_4[i] \cdot S_0^i \cdot S_1^i +}{m_5[i] \cdot S_0^i \cdot S_2^i + m_6[i] \cdot S_1^i \cdot S_2^i + m_7[i] \cdot S_0^i \cdot S_1^i \cdot S_2^i} \right),$$
(4)

where the coefficients m are transmitted in the Dolby Vision metadata and depend on the current segment and color channel. The order N is specified in the Dolby Vision metadata as well. The calculation can be carried out in fixed point or 32 bit floating point.

Enhancement Layer Decoding Process

For each BL video frame, there is a corresponding EL video frame that is reconstructed by the EL video decoder. The Dolby Vision decoder must guarantee that the decoded BL video frame and the decoded EL video frame are both in 55 display order and frame aligned to each other. In an EL video frame, the sample values carry three quantized components of an EL signal in YCbCr color space. Once an EL video frame is aligned with its corresponding BL video frame, it must: 60

- 1. Upscale the EL signal to the same resolution of BL, if the EL resolution is lower than the BL resolution
- 2. Perform inverse quantization to translate the EL signal to the Dolby Vision signal domain.
- The inverse quantized EL signal can now be added to the 65 predicted BL signal. An example process for the EL decoding processing is shown FIG. **4**.

Enhancement Layer Spatial Resampling

If the el_spatial_resampling_filter_flag is equal to 1, the Dolby Vision decoder must upsample the reconstructed signal from the EL video decoder in both the horizontal and vertical directions. If the el_spatial_resampling_filter_flag is equal to 0, the EL spatial resampling is bypassed.

The input is the reconstructed video frame from the EL video decoder with bit depth equal to EL_bit_depth and without any changes to the chroma format. The output of this process is a spatially upsampled, reconstructed EL signal with the same bit depth and chroma format as the input signal.

Vertical upsampling is applied first, followed by horizontal upsampling.

Enhancement Layer Nonlinear Dequantization

The input is a reconstructed EL signal with a bit depth equal to 10 (EL_bit_depth=10). Based on the value of coefficient_data_type, the final output is either a fixed-point integer or a 32-bit single precision floating point value. The NLdQ method to be used is determined as follows:

If nlq_method_idc is equal to 0, NLQ_LINEAR_DZ applies.

If nlq_method_idc is equal to 1, NLQ_MU_LAW applies. NLQ_LINEAR_DZ

The linear with dead zone dequantization employes piecewise linear functions to calculate the dequantized pel values. Each of the linear functions is specified by slope S, threshold T and offset M, with a deadzone defined at the offset. This process is operated individually on each component of each pel R and is given by:

$$dR = \begin{cases} 0, R = M \tag{5} \\ S*((R-M) - 0.5* \operatorname{sign}(R-M)) + T* \operatorname{sign}(R-M) \ R \neq M \end{cases}$$
with
$$\operatorname{sign}(x) = \begin{cases} -1 \ x < 0 \\ 1 \ x \ge 0 \end{cases}$$

The dequantized pixel value is given by dR.

The Dolby Vision signal reconstruction takes in the predicted (or mapped) BL signal and the inverse quantized EL signal, and the reconstructed pel value is a sum of the two 45 inputs. Based on the value of coefficient_data_type, the final output is either a fixed-point integer or a 32-bit single precision floating point value. Appropriate offsetting, scaling and clipping are specified accordingly for each case to ensure a valid pel value.

50 Definition of Graphic Overlay Adaptation

Graphics processing for Dolby Vision is similar to the Graphics processing of the BDMV HDR case, but it is handled inside of the Dolby Vision Image Processing. Graphics processing for Dolby Vision adds an additional processing step of inverse display management to the graphics handling. This additional step maps the graphics signal to the Dolby Vision signal space.

FIG. 5A depicts an example of the video overlay process in a first embodiment (e.g., HDMV mode). It follows the
conceptual model of presentation planes as described in Ref. [9]. In addition, inverse display management (inverse DM) is applied to the Primary and Secondary graphics planes (e.g., for presentation and/or interactive graphics) prior to the mixing process so that the dynamic ranges of the input
primary and secondary graphics matches the dynamic range of the signal at the output of the Dolby Vision composer. As used herein, the term 'inverse display management' denotes

15

a process to increase the dynamic range of a signal. An example of a dynamic range mapping function may be found in Ref. [12].

FIG. 5B depicts an example of the video overlay process in a second embodiment (e.g., BD-J mode). In addition to 5 the current presentation plane model of BD-J mode, as described in [9], an inverse display management (Inverse DM) shall be applied to the existing graphic planes as shown in the figure.

Definition of the Dolby Vision HDMI Interface

Dolby Vision content is transmitted to the rendering device via HDMI. The HDMI device must support HD@60p, UHD@30p and UHD@60p. The Dolby Vision pixel format is 12-bit YCbCr 4:2:2. HDMI Sink

A Dolby Vision display (i.e. the HDMI sink) indicates its support for Dolby Vision content in its HDMI E-EDID by setting a flag in the Dolby Vision Vendor Specific Video Data Block (VSVDB) conforming to CEA Extension version 3 as defined in section 7.5.7 of [8]. Further, it shall also 20

indicate support for YCbCr 4:2:2 in its E-EDID. The Dolby Vision VSVDB also contains the 12 bit primary RGB chromaticities, white points and luminance characteristics of the display. The Dolby Vision display verifies that it is connected to a Dolby Vision capable source 25 device (i.e. the Ultra HD Blu-ray player) by checking the validity of the metadata CRC (Cyclic Redundancy Check) as defined later.

HDMI Source

The Dolby Vision capable Ultra HD Blu-ray player (i.e. 30 HDMI Source) transmits the Dolby Vision baseband video signal incorporating the embedded metadata stream. The embedded metadata and its CRC protection are used to indicate that a valid Dolby Vision baseband signal is present. HDMI source and sink negotiate the resulting Dolby Vision 35 format-if any-before transmission according to the HDMI protocol.

Dolby Vision Metadata

To accommodate the display properties, Dolby Vision Display Management (DM) metadata is sent to the Dolby 40 Vision capable display on a per-frame basis. Nonetheless, the DM metadata can be shared among multiple frames, leading to a scene based DM metadata package in the best case. Up to 16 DM metadata packages shall be buffered for reference. 45

A DM metadata structure holds information about its identifier, the previous frame's metadata to be replaced, scene cut information, and about color conversion matrices from YCbCr to display-RGB. The metadata is packetized into one or more DM metadata transmission packets of 1024

bits each. These consist of packet type identifiers, the DM metadata, and a 32bit-CRC. There are four kinds of EDR metadata transmission packet types:

- 0b00: a single packet carries an entire Dolby Vision DM metadata structure
- 0b01: the first packet if multiple packets carry the Dolby Vision DM metadata structure
- 0b10: intermediate packet(s) if multiple packets carry the Dolby Vision DM metadata structure
- 0b11: the last packet if multiple packets carry the Dolby Vision DM metadata structure

Dolby Vision Metadata Transmission

For transmission, the Dolby Vision DM metadata package is put bit by bit into the least significant bit of each 12 bit chroma channel in the YCbCr 4:2:2 signal. When Dolby Vision DM metadata transmission packet is represented in a sequence of bits, the first byte goes first with the most significant bit of that byte first. For example, for a byte 0x01, the seven zeros go first followed by the one 1. The i-th bit of the Dolby Vision DM metadata transmission packet is at bit[m] $(0 \le m \le 7)$ of byte[n] $(0 \le n \le 127)$ where $i = (n^*8 + (7-m))$.

Assuming that the Dolby Vision video frame has a resolution of W×H and a pixel sample can be represented using coordinates (y, x), where $0 \le y \le H$ and $0 \le x \le W$. For each pixel, there are one luma sample and one chrominance sample, which is the Cb component for an even pixel or the Cr component for an odd pixel. In raster scan order the i-th pixel is at (y, x) and $i=(W \times y + x)$.

The i-th bit of a Dolby Vision DM metadata transmission packet shall be placed onto the least significant bit of chrominance sample of the i-th pixel (y, x) in raster scan order in the Dolby Vision video frame.

To improve the imperceptibility of embedding the Dolby Vision DM metadata into the YCbCr signal, bit scrambling is applied to the metadata before embedding.

For the sake of robustness, each Dolby Vision DM metadata transmission packet shall be sent three times consecutively. The Dolby Vision sink shall check the CRC of the transmission packets and discard subsequent copies as soon as one CRC is valid. If the packet type is not 0b00, i.e. if the Dolby Vision DM metadata is split among multiple transmission packets, all these packets share the same metadata identifier and all shall be included within one single video frame. The first transmission packet shall have packet type 0b01, the last one 0b11, the intermediate ones 0b10 in this case.

An example of the metadata bits embedded into the samples for the first four luminance and associated chrominance samples is shown in Table 3 with 12 bits on the input chain.

TABLE 3

	Layout of l	Dolby Visio	n DM metad	ata embedde	ed in 12-bit H	EDR YCbCr	4:2:2 video	data
D11	Cb[0][11]	Y[0][11]	Cr[0][11]	Y[1][11]	Cb[1][11]	Y[2][11]	Cr[1][11]	Y[3][11]
D10	Cb[0][10]	Y [0][10]	Cr[0][10]	Y[1][10]	Cb[1][10]	Y[2][10]	Cr[1][10]	Y[3][10]
D9	Cb[0][9]	Y[0][9]	Cr[0][9]	Y[1][9]	Cb[1][9]	Y[2][9]	Cr[1][9]	Y[3][9]
D8	Cb[0][8]	Y[0][8]	Cr[0][8]	Y[1][8]	Cb[1][8]	Y[2][8]	Cr[1][8]	Y[3][8]
D7	Cb[0][7]	Y[0][7]	Cr[0][7]	Y[1][7]	Cb[1][7]	Y[2][7]	Cr[1][7]	Y[3][7]
D6	Cb[0][6]	Y[0][6]	Cr[0][6]	Y[1][6]	Cb[1][6]	Y[2][6]	Cr[1][6]	Y[3][6]
D5	Cb[0][5]	Y[0][5]	Cr[0][5]	Y[1][5]	Cb[1][5]	Y[2][5]	Cr[1][5]	Y[3][5]
D4	Cb[0][4]	Y[0][4]	Cr[0][4]	Y[1][4]	Cb[1][4]	Y[2][4]	Cr[1][4]	Y[3][4]
D3	Cb[0][3]	Y[0][3]	Cr[0][3]	Y[1][3]	Cb[1][3]	Y[2][3]	Cr[1][3]	Y[3][3]
D2	Cb[0][2]	Y[0][2]	Cr[0][2]	Y[1][2]	Cb[1][2]	Y[2][2]	Cr[1][2]	Y[3][2]
D1	Cb[0][1]	Y[0][1]	Cr[0][1]	Y[1][1]	Cb[1][1]	Y[2][1]	Cr[1][1]	Y[3][1]
D0	Metadata	Y[0][0]	Metadata	Y [1][0]	Metadata	Y[2][0]	Metadata	Y [3][0]

25

45

A 1. Dolby Vision Metadata Bitstream Syntax

This section provides information about the Dolby Vision metadata syntax elements for Ultra-HD Blu-ray using the H.265/ HEVC system in Ref. [3] as the reference system. ⁵ The enhanced reference processing unit data syntax as specified in this section conveys the parameters necessary to predict the Dolby Vision signal efficiently from the reconstructed BL video signal, to de-quantize the reconstructed Dolby Vision ¹⁰ video signal.

A 1.1 Reference Processing Unit Data Raw Byte Sequence Payload Syntax

TABLE A-1-1

Reference Processing Unit Data Raw Byte Sequence Payload Syntax	-
Descriptor	
rpu_data_rbsp () {	20
}	

A 1.2 Reference Processing Unit Data Syntax

TABLE A-1-2

Reference Processing Unit Data Syntax		_
	Descriptor	30
rpu_data () {		
rpu_data_header ()		
if $(rpu_type == 2)$		
if (!use_prev_vdr_rpu_flag)		
vdr_rpu_data_payload ()		35
if (vdr_dm_metadata_present_flag)		
vdr_dm_data_payload ()		
while (!byte_aligned ())		
rpu_alignment_zero_bit	f(1)	
rpu_data_crc32	u(32)	
} // EDR RPU data		40
}		

A 1.3 Reference Processing Unit Data Header Syntax

TABLE A-1-3

Reference	Processing	Unit Data	Header Syntax	

	Descriptor
rpu_data_header () {	
rpu_type	u(6)
rpu_format	u(11)
if $(rpu_type == 2)$ {	
vdr_rpu_profile	u(4)
vdr_rpu_level	u(4)
vdr_seq_info_present_flag	u(1)
if (vdr_seq_info_present_flag) {	
chroma_resampling_explicit_filter_flag	u(1)
coefficient_data_type	u(2)
if (coefficient_data_type == 0) {	
coefficient_log2_denom	ue(v)
}	
vdr_rpu_normalized_idc	u(2)
BL_video_full_range_flag	u(1)
if (rpu_format & $0x700 == 0$) {	
BL_bit_depth_minus8	ue(v)
EL_bit_depth_minus8	ue(v)
vdr_bit_depth_minus8	ue(v)
spatial_resampling_filter_flag	u(1)
reserved_zero_3bits	u(3)

TABLE A-1-3-continued

Reference Processing Unit Data Header Syntax	
	Descriptor
el_spatial_resampling_filter_flag	u(1)
disable_residual_flag	u(1)
} // end of sequence header	
} // end of EDR RPU sequence header	
vdr_dm_metadata_present_flag	u(1)
use_prev_vdr_rpu_flag	u(1)
if (use_prev_vdr_rpu_flag) {	
prev_vdr_rpu_id	ue(v)
}	
else {	
vdr_rpu_id	ue(v)
mapping_color_space	ue(v)
mapping_chroma_format_idc	ue(v)
for (cmp = 0; cmp < 3; cmp++) {	
num_pivots_minus2 [cmp]	ue(v)
for (pivot_idx = 0; pivot_idx \leq	
num_pivots_minus2 [cmp] + 2;	
$pivot_idx + +)$	
pred_pivot_value [cmp] [pivot_idx]	u(v)
<pre>} // end of pivot points for BL three compo-</pre>	
nents	
if (rpu_format & $0x700 == 0$ &&	
!disable_residual_flag) {	(2)
nlq_method_idc	u(3)
$nlq_num_pivots_minus2 = 0$	
} // end of vl.x architecture EL specific	
num_x_partitions_minus1	ue(v)
num_y_partitions_minus1	ue(v)
<pre>} // end of EDR RPU frame header } // end of EDR RPU header</pre>	
f " end of EDX XI O header	

A 1.4 Reference Processing Unit Data Payload Syntax

TABLE A1.4

Reference Processing Unit Data Payload Syntax	
	Descriptor
vdr_rpu_data_payload() { rpu_data_mapping(0, 0) rpu_data_nlq(0, 0) }	

A 1.5 Reference Processing Unit Data Mapping Parameters Syntax

TABLE A-1-5

50	inibee in t e	
50	Reference Processing Unit Data Mapping Syntax	
		Descriptor
55	rpu_data_mapping (y, x) { num_cmps = 3	
	for (cmp = 0; cmp < num_cmps; cmp++) { for (pivot_idx = 0; pivot_idx < num_pivots_minus2	
	[cmp] + 1; pivot_idx++) { mapping_idc[y] [x] [cmp] [pivot_idx]	ue(v)
60	<pre>if (num_mapping_param_predictors[y] [x] [cmp] [pivot_idx] > 0)</pre>	
00	mapping_param_pred_flag[y] [x] [cmp] [pivot_idx]	u(1)
	else mapping_param_pred_flag[y] [x] [cmp]	
	[pivot_idx] = 0 if(mapping_param_pred_flag[y] [x] [cmp]	
65	[pivot_idx] = 0) rpu_data_mapping_param(y, x, cmp, pivot_idx)	

Annex A

TABLE A-1-5-continued

Reference Processing Unit Data Mapping Syntax

	Descriptor
else {	
if(num_mapping_param_predictors[y] [x]	
$[cmp] [pivot_idx] > 1)$	
diff_pred_part_idx_mapping_minus1[y] [x]	ue(v)
[cmp] [pivot_idx]	
}	
} // pivot_idx	
} // cmp	
}	

TABLE A-1-6

	Descripto
rpu_data_mapping_param(y, x, cmp, pivot_idx) { if(mapping_idc [y] [x] [cmp] [pivot_idx] == MAPPING_POLYNOMIAL) { poly_order_minus1[y] [x] [cmp] [pivot_idx]	ue(v)
if (poly_order_minus1[y] [x] [cmp] [pivot_idx] ==	ue(v)
0) linear_interp_flag[y][x][cmp][pivot_idx] if (poly_order_minus1[y][x][cmp][pivot_idx] == 0 &&	u(1)
linear_interp_flag[y] [x] [cmp] [pivot_idx]	
if(coefficient_data_type == 0) pred_linear_interp_value_int[y] [x] [cmp] [pivot_idx]	ue(v)
pred_linear_interp_value[y] [x] [cmp]	$\mathbf{u}(\mathbf{v})$
<pre>[pivot_idx] if (pivot_idx = = num_pivots_minus2[cmp]) if(coefficient_data_type == 0)</pre>	
pred_linear_interp_value_int[y] [x] [cmp] [pivot_idx + 1]	ue(v)
pred_linear_interp_value[y][x][cmp] pivot_idx + 1]	$\mathbf{u}(\mathbf{v})$
} // Linear interpolation else {	
<pre>for(i = 0 ; i <= poly_order_minus1[y] [x] [cmp] [pivot_idx] + 1; i ++) {</pre>	
<pre>poly_coef_int[y] [x] [cmp] [pivot_idx] [i] poly_coef[y] [x] [cmp] [pivot_idx] [i] } // the i-th order</pre>	se(v) u(v)
} // Non-linear } // Polynomial coefficients	
else if(mapping_idc [y] [x] [cmp] [pivot_idx] == MAPPING_MMR) {	
<pre>mmr_order_minus1[y] [x] [cmp] [pivot_idx] if (coefficient_data_type == 0)</pre>	u(2)
<pre>mmr_constant_int[y] [x] [cmp] [pivot_idx] mmr_constant[y] [x] [cmp] [pivot_idx] for(i = 1; i <= mmr_order_minus1 + 1; i ++) { for (j = 0; j < 7; j++) {</pre>	se(v) u(v)
if (coefficient_data_type = = 0) mmr_coef_int[y] [x] [cmp] [pivot_idx] [i]	se(v)
<pre>[j] mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j] } // the j-th coefficients } // the i-th order</pre>	u(v)
} // MMR coefficients }	

16

A 1.6 Reference Processing Unit Data Nonlinear Quantization and Quantization Parameters Syntax

TABLE A-1-7

	Reference Processing Unit Data Nonlinear Quantization Syntax	
		Descriptor
10	<pre>rpu_data_nlq(y, x) { num_cmps = 3 for (pivot_idx = 0; pivot_idx < nlq_num_pivots_minus2 + 1; pivot_idx ++) {</pre>	
	<pre>for (cmp = 0; cmp < num_cmps; cmp ++) { if (num_nlq_param_predictors[y] [x] [pivot_idx] [cmp] > 0) nlq_param_pred_flag[y] [x] [pivot_idx] [cmp]</pre>	u(1)
15	else nlq_param_pred_flag [y] [x] [pivot_idx] [cmp] = 0	u(1)
20	<pre>if (nlq_param_pred_flag[y] [x] [pivot_idx] [cmp] == 0)</pre>	
20	<pre>else { if (num_nlq_param_predictors[y] [x] [pivot_ idx] [cmp] > 1) diff_pred_part_idx_nlq_minus1[y] [x] [pivot_idx] [cmp]</pre>	ue(v)
25	} // cmp } // pivot_idx	

TABLE A-1-8

	Reference Processing Unit	
	Data Nonlinear Quantization Parameters Syr	ıtax
35		Descriptor
	<pre>rpu_data_nlq_param(y, x, pivot_idx, cmp) { nlq_offset [y] [x] [pivot_idx] [cmp] if (coefficient data type = = 0)</pre>	u(v)
40	vdr_in_max_int [y] [x] [pivot_idx] [cmp] vdr_in_max [y] [x] [pivot_idx] [cmp] if (nlq_method_idc == NLQ_LINEAR_DZ) {	ue(v) u(v)
-10	<pre>if (coefficient_data_type == 0) linear_deadzone_slope_int [y] [x] [pivot_</pre>	ue(v)
	<pre>idx] [cmp] linear_deadzone_slope [y] [x] [pivot_idx] [cmp]</pre>	u(v)
45	<pre>if (coefficient_data_type = = 0)</pre>	ue(v)
	linear_deadzone_threshold[y] [x] [pivot_idx] [cmp] } // Linear dead zone coefficients	u(v)
50	<pre>} // Enter dead zone coefficients }</pre>	

A 2. Dolby Vision Metadata Semantics

This section specifies semantics associated with the syn-55 tax elements in the Dolby Vision consumer coding system. The section does not include specifications of semantics associated with the existing syntax elements in the H.265/ HEVC system. Refer to Ref. [3] for information about these elements. When the semantics of a syntax element are specified using a table or a set of tables, the bitstream must not include any values not specified therein.

A 2.1 Reference Processing Unit Data Raw Byte Sequence Payload Semantics

65 The reference processing unit raw byte sequence payload semantics are detailed in Reference Processing Unit Data Semantics.

A 2.2 Reference Processing Unit Data Semantics rpu_alignment_zero_bit shall be equal to 0.

rpu_data_crc32 is a 32-bit CRC to allow error detection for rpu_data(). A model for generating this 32-bit CRC is defined in Annex A of [10]. The CRC value is ⁵ calculated on the entire rpu_data() excluding rpu_ data_crc32, using the following generator polynomial:

$$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x^{11}+x^{10}+x^$$

A 2.3 Reference Processing Unit Data Header Semantics

- rpu_type specifies the type of this RPU and must be 2 for the BDA Ultra HD Blu-ray Option-A HDR coding system. 15
- rpu_format specifies further information related to the prediction and coding process given rpu_type. The value of rpu_format must remain the same for the entire sequence. For BDA Ultra-HD Blu-ray, rpu_format must be set to 0. 20

TABLE A-2-1

Definition of rpu_format field			-
Major version rpu_format bit[10:8]	Minor version rpu _format bit[7:4]	Codec Version	25
0Ь000	060000	Dolby Consumer EDR codec v1.0 architecture	•
06000 06001 06010 06111	0b0001 0b1111 0b0000 0b1111	Reserved for future Use Unspecified	30

- vdr_rpu_profile and vdr_rpu_level specify the profile and the level constraints that the Dolby Vision reference processing conforms to, and must be 1 and 0, respec-³⁵ tively, for BDA Option-A HDR.
- vdr_seq_info_present_flag indicates if Dolby Vision sequence information is present in the current reference processing unit. When Dolby Vision sequence level information is present, all values of included syntax elements must remain the same for the entire video sequence. For BDA Ultra-HD Blu-ray, vdr_seq_info_ present_flag must be set to 0.
- chroma_resampling_explicit_filter_flag must be equal to 0 for Ultra-HD Blu-ray.
- coefficient_data_type specifies the data types of the mapping parameters and the NLQ parameters used during Dolby Vision codec processing The value of coefficient_data_type must be in the range of 0 to 3.
- The allowed parameter data types are as shown in the following table.

TABLE A-2-2

Dolby Visio	n Codec Coefficient Data Types	55
coefficient_data_type	Dolby Vision Decoding Coefficient Data Type	
0 1 2 3	fixed point 32-bit single precision defined in IEEE-754- 2008 Reserved	60

coefficient_log 2_denom specifies the number of fractional bits for Dolby Vision decoding related coefficients if coefficient_data_type is equal to 0. coefficient_ log 2_denom must be in the range of 0 to 32.

- coefficient_log 2_denom is not present when coefficient_ data_type is not equal to 0. When coefficient_log 2_denom is not present, it is assumed to be 0.
- vdr_rpu_normalized_idc specifies what type of normalization is applied to the input and output data of the Dolby Vision reference processing unit interlayer prediction process. For Ultra-HD Blu-ray vdr_rpu_normalized idc must be 1.
- BL_video_full_range_flag equal to 1 specifies the black level and range of the luma and chroma BL signals is in full range. If BL_full_range_flag is equal to 0, the black level and range of the luma and chroma BL signals is in standard range.
- When the BL_video_full_range_flag syntax element is not present, the value of BL_video_full_range_flag is assumed to be equal to 0.
- BL_bit_depth_minus8 is used to derive the bit depth of BL signal, BL_bit_depth. BL_bit_depth is equal to BL_bit_depth_minus8+8. For Ultra-HD Blu-ray BL_bit_depth_minus8 must be equal to 2.
- EL_bit_depth_minus8 is used to derive the bit depth of the EL signal, EL_bit_depth. EL_bit_depth is equal to EL_bit_depth_minus8+8. For Ultra-HD Blu-ray EL_bit_depth_minus8 must be equal to 2.
- vdr_bit_depth_minus8 is used to derive the bit depth of the reconstructed Dolby Vision signal, vdr_bit_depth.
 vdr_bit_depth is equal to vdr_bit_depth_minus8+8. The value of vdr_bit_depth_minus8 must be in the range of 0 to 6.
- spatial_resampling_filter_flag must be equal to 0 for Ultra-HD Blu-ray. reserved_zero_3bits must be equal to 0.
- el_spatial_resampling_filter_flag equal to 1 specifies that the EL spatial resampling filter is used for EL decoding. If 0, this means spatial resampling is bypassed during EL decoding. The value of el_spatial_resampling_filter_flag must be in the range of 0 and 1. The sum of el_spatial_resampling_filter_flag and spatial_resampling_filter_flag must be less than or equal to 1.
- disable_residual_flag must be equal to 0 for Ultra-HD Blu-ray.
- vdr_dm_metadata_present_flag specifies whether the vdr_dm_data_payload() syntax structure is present. The following values are supported:
 - 1: vdr_dm_data_payload() syntax structure as defined in Annex A.2 is present
 - 0: vdr_dm_data_payload() syntax structure is not present.
- If vdr_dm_metadata_present_flag is not present, it is assumed to be 0. For Ultra-HD Blu-ray vdr_dm_metadata_present_flag must be equal to 1.
- use_prev_vdr_rpu_flag specifies whether the current Dolby Vision reference processing unit is predicted from a previously sent reference processing unit. The following values are supported.
 - 1: A previously sent Dolby Vision reference processing unit is used to generate the interlayer prediction for the current picture
 - 0: The current Dolby Vision reference processing unit is transmitted explicitly, and a vdr_rpu_id is assigned to the current Dolby Vision reference processing unit.
- When the BL picture is an instantaneous refresh picture, the value of use_prev_vdr_rpu_flag must be 0.
- prev_vdr_rpu_id specifies the rpu_id of the previously sent Dolby Vision reference processing unit that is used to process the current picture.

- The value of prev_vdr_rpu_id must be in the range of 0 to 15, further constrained by the number of Dolby Vision reference processing units transmitted since the last instantaneous decoding refresh picture. If prev_vdr_rpu_id is not present, it must be set to -1 (invalid ⁵ rpu id).
- vdr_rpu_idvdr_rpu_id specifies the rpu_id assigned to the current Dolby Vision reference processing unit that is explicitly transmitted in the rpu_data_payload().
- The value of vdr_rpu_id must be in the range of 0 to 15. ¹⁰ If the BL picture is an instantaneous decoding refresh picture, vdr_rpu_id must be equal to 0.
- An instantaneous decoding refresh picture causes the decoding process to mark all reference processing units as unused for reference immediately after the reference ¹⁵ processing unit bitstream decoding of the instantaneous decoding refresh picture. All reference processing units that follow a reference processing unit of the instantaneous decoding refresh picture can be decoded without referencing from any reference processing unit that ²⁰ precedes the reference processing unit of the instantaneous decoding refresh picture.
- mapping_color_space must be set to 0 for BDA Option-A. mapping_chroma_format_idc must be set to 0 for BDA
- Option-A. 25
- num_pivots_minus2[cmp] specifies the number of pivot points minus two used to perform the piecewise mapping process for the color component cmp. For example, if one mapping model is applied for the entire BL signal dynamic range, then the value of num_piv-³⁰ ots_minus2 is equal to 0.
- The value of num_pivots_minus2 must be in the range of 0 to 7, inclusive.
- pred_pivot_value[cmp] [i] is used to derive the value pivot_value[cmp] [i] of the i-th pivot point for the ³⁵ component cmp. These pivot points collectively define the boundaries of the piecewise mapping process. The value of pivot_value[cmp] [i] is derived using the following pseudocode. The array pred_pivot_value[] [] is used as input and the array pivot_value[] [] is ⁴⁰ used as output. The value of i must be in the range of 0 to (num pivots minus2+1), inclusive.
- The number of bits used for the representation of the pred_pivot_value[cmp] [i] syntax element is BL_bit_ depth bits. 45

- The component order is Y, Cb, Cr for cmp=0, 1, 2. 60 nlg_method_idc specifies the NLQ method used for current EL video frame. The vale of nlq_method_idc must be set to 0 for BDA Option-A.
- num_x_partitions_minus1 must be set to 0 for BDA Option-A. 65
- num_y_partitions_minus1 must be set to 0 for BDA Option-A.

- A 2.4 Reference Processing Unit Data Payload Semantics This section provides details on the semantics of the reference processing unit data payload for rpu_type equal to 2.
- A 2.4.1 Reference Processing Unit Data Mapping Syntax mapping_idc[y] [x] [cmp] [pivot_idx] specifies the mapping method used for the color component cmp, and the dynamic range identified by pivot_idx.
- The value of mapping_idc[y] [x] [cmp:] [pivot_idx] must be in the range of 0 to 1, inclusive. The values of mapping_idc[y:[x] [cmp] [pivot_idx] and the corresponding mapping method currently supported in the Dolby Vision system for BDA Option-A are specified in the following table.

TABLE A-2-3

	Interlayer Mapping Methods		
0	mapping_idc	Name	Method
	0	MAPPING_POLYNOMIAL	N^{th} order polynomial mapping (N >= 1)
	1	MAPPING_MMR	Multivariate multiple regression mapping

- mapping_param_pred_flag[y] [x] [cmp] [pivot_idx] specifies whether the mapping parameters associated with mapping_idc[y] [x] [cmp] [pivot_idx] are explicitly transmitted or predicted from a previous partition in the current picture reference processing unit. Supported values are:
 - 0: The mapping parameters associated with mapping_idc[y] [x] [cmp] [pivot_idx] are explicitly transmitted.
 - 1: The mapping parameters of a previous partition from the current picture are assigned to the mapping parameters associated with mapping_idc[y] [x] [cmp] [pivot_idx].
- When the syntax element mapping_param_pred_flag[y] [x] [cmp] [pivot_idx] is not present, it shall be inferred to be 0.
- If no predictor is available from previous partitions in the current picture (for example, if no previous partition from the current picture reference processing unit uses the same mapping method as indicated by mapping_idc [y] [x] [cmp] [pivot_idx]), then there will be no predictor available to predict mapping parameters for mapping_idc[y] [x] [cmp] [pivot_idx]. In this case, num_mapping_param_predictors[y] [x] [cmp] [pivot_idx] and mapping_param_pred_flag[y] [x] [cmp] [pivot_idx] are both set to 0.
- Note—num_mapping_param_predictors[y:[x] [cmp] [pivot_idx] is the number of available mapping parameter predictors in the current picture associated with mapping_idc[y] [x] [cmp] [pivot_idx]. This number increments by one when a new set of mapping parameters associated with mapping_idc[y] [x] [cmp] [pivot_idx] is explicitly transmitted, i.e. the value of mapping_param_pred_flag[y] [x] [cmp] [pivot_idx] is 0.
- diff_pred_part_idx_mapping_minus1[y] [x] [cmp] [pivot_idx] specifies a differential value used to derive the partition index, pred_part_idx_mapping[y] [x] [cmp] [pivot_idx], of the mapping parameter predictor in the current reference processing unit. The presence of diff_pred_part_idx_mapping_minus1[y] [x] [cmp] [pivot_idx] depends on num_mapping_param_predictors[y] [x] [cmp] [pivot_idx].

- The value of pred_part_idx_mapping[y] [x] [cmp] [pivot_idx] is derived and constrained as follows:
 - If num_mapping_param_predictors[y] [x] [cmp] [pivot_idx] is greater than 1, the value of pred_part_idx_ mapping[y] [x] [cmp] [pivot_idx] is set to (cur- ⁵ r_part_idx_diff_pred_part_idx_mapping_minus1[y] [x] [cmp] [pivot_idx]-1).
 - Note—curr_part_idx is the index of current partition in raster scan order.
 - Otherwise, if num_mapping_param_predictors[y] [x] ¹⁰ [cmp] [pivot_idx] is equal to 1, the value of pred_ part_idx_mapping[y] [x] [cmp] [pivot_idx] is set to be the partition index of the only previous partition in the current reference processing unit that can serve as the predictor of mapping parameters associated with mapping_idc[y] [x] [cmp] [pivot_idx].
 - The value of pred_part_idx_mapping[y] [x] [cmp] [pivot_idx] must be in the range of 0 to (cur-r_part_idx-1).

A 2.4.2 Reference Processing Unit Data Mapping Parameters Semantics

- poly_order_minus1[y] [x] [cmp] [pivot_idx] specifies the order of the polynomial mapping method indentified by mapping_idc[y] [x] [cmp] [pivot_idx]. The value of 25 poly_order_minus1[y] [x] [cmp] [pivot_idx] must be 0 or 1.
- linear_interp_flag[y] [x] [cmp] [pivot_idx] specifies whether the first order polynomial mapping parameters are indicated using linear interpolation method. 30
 - 1: The first-order polynomial mapping parameters are indicated using linear interpolation method.
 - 0: The first-order polynomial mapping parameters are indicated using polynomial coefficients.
- Note—linear interpolation is another way to specify the 35 first order polynomial. The inverse mapped value for the end points for each piece is specified and the values in between the end points are interpolated. Linear interpolation can be used to implement look-up tables.
- pred_linear_interp_value_int[y] [x] [cmp] [pivot_idx] 40 specifies the integer portion of fp_pred_linear_interp_value[y] [x] [cmp] [pivot_idx] when coefficient_ data_type is equal to 0. If coefficient_data_type equal to 1, pred_linear_interp_value_int[y] [x] [cmp] [pivot_ idx] is not present. 45
- Note—fp_pred_linear_interp_value[y] [x] [cmp] [pivot_ idx] is used to derive the value of linear_interp_value [y] [x] [cmp] [pivot_idx] associated with mapping_idc [y] [x] [cmp] [pivot_idx] when linear_interp_flag[y] [x] [cmp] [pivot_idx] is equal to 1 and coefficient_ 50 data_type is equal to 0.
- pred_linear_interp_value[y] [x] [cmp] [pivot_idx] specifies the fractional portion of fp_pred_linear_interp_value[y] [x] [cmp] [pivot_idx] when coefficient_ data_type is equal to 0. If coefficient_data_type equal to 55 1, pred_linear_interp_value[y] [x] [cmp] [pivot_idx] is used to derive the value of linear_interp_value[y] [x] [cmp] [pivot_idx] associated with mapping_idc[y] [x] [cmp] [pivot_idx] when linear_interp_flag[y] [x] [cmp] [pivot_idx] is equal to 1. If coefficient_data_type is 60 equal to 0, the length of the pred_linear_interp_value [y] [x] [cmp] [pivot_idx] syntax element is coefficient_ log 2_denom bits. If coefficient_data_type is equal to 1, the length of the pred_linear_interp_value[y] [x] [cmp] [pivot_idx] syntax element is 32 bits. 65
- The values of linear_interp_value[y] [x] [cmp] [pivot_ idx] is derived and constrained as follows:

- If pivot_idx is equal to 0, the value of linear_interp_value[y] [x] [cmp] [pivot_idx] is equal to pred_ linear_interp_value[y] [x] [cmp] [pivot_idx] if coefficient_data_type is equal to 1. If coefficient_ data_type is equal to 0, fp_pred_linear_interp_value [y] [x] [cmp] [pivot_idx]=(pred_linear_interp_value_int[y] [x] [cmp] [pivot_idx]<<coefficient_log 2_denom)+pred_linear_interp_value[y] [x] [cmp] [pivot_idx]=dn_inear_interp_value[y] [x] [cmp] [pivot_idx]=fp_pred_linear_interp_value[y] [x] [cmp] [pivot_idx].
- Otherwise, the value of linear_interp_value[y] [x] [cmp] [pivot_idx] is equal to pred_linear_interp_value[y] [x] [cmp] [pivot_idx]+linear_interp_value[y] [x] [cmp] [pivot_idx-1] if coefficient_ data_type is equal to 1. If coefficient_data_type is equal to 0, fp_pred_linear_interp_value[y] [x] [cmp] [pivot_idx]=(pred_linear_interp_value_int[y] X [pivot_idx] << coefficient_log [cmp] $2_denom)+$ pred_linear_interp_value[y] [x] [cmp] [pivot_idx] and linear_interp_value[y] [x] [cmp] [pivot_idx]= fp_pred_linear_interp_value[y] [x] [cmp] [pivot_ idx]+linear_interp_value[y] [x] [cmp] [pivot_ idx-1].
- If vdr_rpu_normalized_idc is equal to 0, linear_interp_value[y] [x] [cmp] [i] shall be in the range of [0, $(2^{vdr_bit_depth}-1)$]. If vdr_rpu_normalized_idc is equal to 1, linear_interp_value[y] [x] [cmp] [i] shall be in the decimal valued range of [0, 1).
- poly_coef_int[y] [x] [cmp] [pivot_idx] [i] specifies the integer portion of fp_poly_coef[y] [x] [cmp] [pivot_ idx] [i] when coefficient_data_type is equal to 0. If coefficient_data_type is equal to 1, poly_coef_int[y] [x] [cmp] [pivot_idx] [i] is not present.
- Note—fp_poly_coef[y] [x] [cmp] [pivot_idx] [i] is used to derive the value of the i-th order polynomial coefficient associated with mapping_idc[y] [x] [cmp] [pivot idx] when coefficient data type is equal to 0.
- poly_coef[y] [x] [cmp] [pivot_idx] [i] specifies the fractional portion of fp_poly_coef[y] [x] [cmp] [pivot_idx]
 [i] when coefficient_data_type is equal to 0. If coefficient_data_type is equal to 1, poly_coef[y] [x] [cmp]
 [pivot_idx] [i] is used to derive the value of the i-th order polynomial coefficient associated with mapping_idc[y] [x] [cmp] [pivot_idx]. If coefficient_data_type is equal to 0, the length of the poly_coef[y] [x] [cmp]
 [pivot_idx] [i] syntax element is coefficient_log 2_denom bits. If coefficient_data_type is equal to 1, the length of the poly_coef[y] [x] [cmp] [pivot_idx] [i] syntax element is 32 bits.
- The value of the i-th order polynomial coefficient associated with mapping_idc[y] [x] [cmp] [pivot_idx] is derived as follows:
 - If coefficient_data_type is equal to 0, the value of the i-th order polynomial coefficient is equal to fp_poly_ coef[y] [x] [cmp] [pivot_idx] [i]=(poly_coef_int[y] [x] [cmp] [pivot_idx] [i]<<coefficient_log 2_denom)+poly_coef[y] [x] [cmp] [pivot_idx] [i]. If coefficient_data_type is equal to 1, the value of the
 - i-th order polynomial coefficient is equal to poly_ coef[y] [x] [cmp] [pivot_idx] [i].
- mmr_order_minus1[y] [x] [cmp] [pivot_idx] specifies the order of the multivariate multiple regression mapping method indentified by mapping_idc[y] [x] [cmp] [pivot_idx]. The value of mmr_order_minus1[y] [x] [cmp] [pivot_idx] must be in the range of 0 to 2.
- mmr_constant_int[y] [x] [cmp] [pivot_idx] specifies the integer portion of fp_mmr_constant[y] [x] [cmp] [piv-

ot_idx] when coefficient_data_type is equal to 0. If coefficient_data_type is equal to 1, mmr_constant_int [y] [x] [cmp] [pivot_idx] is not present.

Note—fp_mmr_constant[y] [x] [cmp] [pivot_idx] is used to derive the value of the multivariate multiple regression constant coefficient associated with mapping_idc [y] [x] [cmp] [pivot_idx] when coefficient_data_type is equal to 0.

mmr_constant[y] [x] [cmp] [pivot_idx] specifies the frac- 10 tional portion of fp_mmr_constant[y] [x] [cmp] [pivot_idx] when coefficient_data_type is equal to 0. If coefficient_data_type is equal to 1, mmr_constant[y] [x] [cmp] [pivot_idx] is used to derive the value of multivariate multiple regression constant coefficient ¹⁵ associated with mapping_idc[y] [x] [cmp] [pivot_idx]. If coefficient_data_type is equal to 0, the length of the mmr_constant[y] [x] [cmp] [pivot_idx] syntax element is coefficient_log 2_denom bits. If coefficient_ ²⁰ [y] [x] [cmp] [pivot_idx] syntax element is 32 bits.

The value of multivariate multiple regression constant coefficient associated with mapping_idc[y] [x] [cmp] [pivot_idx] is derived as follows: 25

- If coefficient_data_type is equal to 0, the value of multivariate multiple regression constant coefficient is equal to fp_mmr_constant [y] [x] [cmp] [pivot_idx]=(mmr_ constant_int[y] [x] [cmp] [pivot_idx]>>coefficient_log 2_denom)+mmr_constant[y] [x] [cmp] [pivot_idx].
- If coefficient_data_type is equal to 1, the value of multivariate multiple regression constant coefficient is equal to mmr_constant[y] [x] [cmp] [pivot_idx].
- mmr_coef_int[y] [x] [cmp] [pivot_idx] [i] [j] specifies the ³⁵ integer portion of fp_mmr_coef[y] [x] [cmp] [pivot_ idx] [i] [j] when coefficient_data_type is equal to 0. If coefficient_data_type is equal to 1, mmr_coef_int[y] [x] [cmp] [pivot_idx] [i] [j] is not present. Note fp_mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j] is used to ⁴⁰ derive the value of the j-th multivariate multiple regression coefficient at the i-th order associated with mapping_idc[y] [x] [cmp] [pivot_idx] when coefficient_ data_type is equal to 0.
- mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j] specifies the ⁴⁵ fractional portion of fp_mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j] when coefficient_data_type is equal to 0. If coefficient_data_type is equal to 1, mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j] is used to derive the value of the j-th multivariate multiple regression coefficient at the i-th order associated with mapping_idc[y] [x] [cmp] [pivot_idx]. If coefficient_data_type is equal to 0, the length of the mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j] syntax element is coefficient_log 2_denom bits. If coefficient_data_type is equal to 1, the length of the mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j] syntax element is 32 bits.
- The value of the j-th multivariate multiple regression coefficient at the i-th order associated with mapping_idc[y] [x] [cmp] [pivot_idx] is derived as follows:
 - If coefficient_data_type is equal to 0, the value of the j-th multivariate multiple regression coefficient at the i-th order is equal to fp_mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j]=(mmr_coef_int[y] [x] [cmp] [piv- 65 ot_idx] [i] [j]>>coefficient_log 2_denom)+mmr_ coef[y] [x] [cmp] [pivot_idx] [i] [j].

If coefficient_data_type is equal to 1, the value of the j-th multivariate multiple regression coefficient at the i-th order is equal to mmr_coef[y] [x] [cmp] [pivot_idx] [i] [j].

A 2.4.3 Reference Processing Unit Data Nonlinear Quantization Semantics

nlq_param_pred_flag[y] [x] [pivot_idx] [cmp] specifies whether NLQ parameters associated with the partition, vertical coordinate y, horizontal coordinate x, pivot_ idx, and cmp are explicitly transmitted or predicted from a previous partition in the current picture reference processing unit.

The two supported values are:

- 0: The NLQ parameters associated with vertical coordinate y, horizontal coordinate x, pivot_idx, and cmp are explicitly transmitted.
- 1: The NLQ parameters of a previous partition in the reference processing unit from the current picture are assigned to the NLQ parameters associated with the partition with vertical coordinate y, horizontal coordinate x, pivot_idx, and cmp.
- When the syntax element nlq_param_pred_flag[y] [x] [pivot_idx] [cmp] is not present, it is assumed to be 0.
- Occasionally, no predictor from previous partitions in the current reference processing unit is available. For example, if no previous partition reference processing unit from the current picture uses the same NLQ method as indicated by the partition with vertical coordinate y, horizontal coordinate x, pivot_idx, and cmp, there will be no predictor available to predict NLQ parameters for the partition with vertical coordinate y and horizontal coordinate x, pivot_idx, and cmp. In this case, num_nlq_param_predictors[y] [x] [pivot_idx] [cmp] and nlq_param_pred_flag[y] [x] [pivot_idx] [cmp] are both set to 0.
- Note—The num_nlq_param_predictors[y] [x] [pivot_idx] [cmp] is the number of available NLQ parameter predictors in the current reference processing unit for the current partition with vertical coordinate y, horizontal coordinate x, pivot_idx, and cmp. This number is incremented by one when a new set of NLQ parameters is explicitly transmitted. (That is, when the value of nlq_param_pred_flag[y] [x] [pivot_idx] [cmp] is 0).
- diff_pred_part_idx_nlq_minus1[y] [x] [pivot_idx] [cmp] specifies a differential value used to derive the partition index, pred_part_idx_nlq[y] [x] [pivot_idx] [cmp], of the NLQ parameter predictor from the reference processing unit of the current picture. The presence of the syntax element diff_pred_part_idx_nlq_minus1[y] [x] [pivot_idx] [cmp] depends on the value of num_nlq_ param_predictors[y] [x] [pivot_idx] [cmp].
- The value of pred_part_idx_nlq[y] [x] [pivot_idx] [cmp] is derived and constrained as follows:
 - If num_nlq_param_predictors[y] [x] [pivot_idx] [cmp] is greater than 1, the value of pred_part_idx_nlq[y] [x] [pivot_idx] [cmp] is set to (curr_part_idx-diff_ pred_part_idx_nlq_minus1[y] [x] [pivot_idx] [cmp]-1).
 - If num_nlq_param_predictors[y] [x] [pivot_idx] [cmp] is equal to 1, the value of pred_part_idx_nlq[y] [x] [pivot_idx] [cmp] is set to be the partition index of the only previous partition in the reference processing unit of the current picture that can serve as the predictor of NLQ parameters associated with the partition in vertical coordinate y, horizontal coordinate x, pivot_idx, and cmp.

The value of pred_part_idx_nlq[y] [x] [pivot_idx] [cmp] must be in the range of 0 and (curr_part_idx-1).

A 2.4.4 Reference Processing Unit Data Nonlinear Quantization Parameter Semantics

- nlq_offset[y] [x] [pivot_idx] [cmp] specifies the NLQ offset coefficient associated with the partition in vertical coordinate y, horizontal coordinate x, pivot_idx, and cmp. The number of bits used for the representation of nlq_offset[y] [x] [pivot_idx] [cmp] syntax element is 10 EL_bit_depth. The value of nlq_offset[y] [x] [pivot_idx] [cmp] is in the range of [0, $2^{EL_bit_depth}$ -1].
- vdr_in_max_int[y] [x] [pivot_idx] [cmp] specifies the integer portion of fp_vdr_in_max[y] [x] [pivot_idx] [cmp] when coefficient_data_type is equal to 0. If 15 coefficient_data_type is equal to 1, vdr_in_max_int[y] [x] [pivot_idx] [cmp] is not present.
- Note—fp_vdr_in_max[y] [x] [pivot_idx] [cmp] is used to derive the value of non-linear quantization maximum EL signal value coefficient associated the partition with 20 vertical coordinate y and horizontal coordinate x, pivot index pivot_idx and component cmp when coefficient_ data_type is equal to 0.
- vdr_in_max[y] [x] [pivot_idx] [cmp] specifies the fractional portion of fp_vdr_in_max[y] [x] [pivot_idx] 25 [cmp] when coefficient_data_type is equal to 0.
- If coefficient_data_type is equal to 1, vdr_in_max[y] [x] [pivot_idx] [cmp] is used to derive the value of the NLQ maximum EL signal value coefficient associated with the partition in vertical coordinate y, horizontal 30 coordinate x, pivot_idx, and cmp.
- If coefficient_data_type is equal to 0, the length of the vdr_in_max[y] [x] [pivot_idx] [cmp] syntax element is coefficient log 2 denom bits.
- If coefficient_data_type is equal to 1, the length of the 35 vdr_in_max[y] [x] [pivot_idx] [cmp] syntax element is 32 bits.
- The value of the NLQ maximum EL signal value coefficient associated with the partition in vertical coordinate y, horizontal coordinate x, pivot_idx, and cmp is 40 derived as follows:
 - If coefficient_data_type is equal to 0, the value of the NLQ maximum EL signal value coefficient is equal to fp_vdr_in_max[y] [x] [pivot_idx] [cmp], where, fp_vdr_in_max[y] [x] [pivot_idx] [cmp]=(vdr_in_ 45 max_int[y] [x] [pivot_idx] [cmp]>>coefficient_log 2_denom)+vdr_in_max[y] [x] [pivot_idx] [cmp].
 - If coefficient_data_type is equal to 1, the value of NLQ maximum EL signal value coefficient is equal to vdr_in_max[y] [x] [pivot_idx] [cmp]. 50
- linear_deadzone_slope_int[y] [x] [pivot_idx] [cmp]
 specifies the integer portion of fp_linear_dead-zone_slope[y] [x] [pivot_idx] [cmp] when coefficient_data_type is equal to 0. If coefficient_data_type is equal to 1, linear_deadzone_slope _int[y] [x] [pivot_idx] 55
 [cmp] is not present. Note—fp_linear_deadzone_slope [y] [x] [pivot_idx] [cmp] is used to derive the value of linear dead zone slope coefficient associated the partition with vertical coordinate y and horizontal coordinate x, pivot index pivot_idx and component cmp when 60 coefficient_data_type is equal to 0.
- linear_deadzone_slope[y] [x] [pivot_idx] [cmp] specifies
 the fractional portion of fp_linear_deadzone_slope[y]
 [x] [pivot_idx] [cmp] when coefficient_data_type is
 equal to 0. 65
- If coefficient_data_type is equal to 1, linear_deadzone_slope[y] [x] [pivot_idx] [cmp] is used to derive

the value of linear dead zone slope coefficient associated with the partition with vertical coordinate y and horizontal coordinate x, pivot index pivot_idx and component cmp.

- If coefficient_data_type is equal to 0, the length of the linear_deadzone_slope[y] [x] [pivot_idx] [cmp] syntax element is coefficient_log 2_denom bits.
- If coefficient_data_type is equal to 1, the length of the linear_deadzone_slope[y] [x] [pivot_idx] [cmp] syntax element is 32 bits.
- The value of linear dead zone slope coeffident associated with the partition with vertical coordinate y and horizontal coordinate x, pivot index pivot_idx and component cmp is derived as follows:
 - If coefficient_data_type is equal to 0, the value of linear dead zone slope coeffident is equal to fp_linear_deadzone_slope[y] [x] [pivot_idx] [cmp]=(linear_deadzone_slope_int[y] [x] [pivot_idx] [cmp] <<coefficient_log 2_denom)+linear_deadzone_slope[y] [x] [pivot_idx] [cmp].
 - If coefficient_data_type is equal to 1, the value of linear dead zone slope coeffident is equal to linear_dead-zone_slope[y] [x] [pivot_idx] [cmp].
- linear_deadzone_threshold_int[y] [x] [pivot_idx] [cmp] specifies the integer portion of fp_linear_deadzone_threshold[y] [x] [pivot_idx] [cmp] when coefficient_ data_type is equal to 0. If coefficient_data_type is equal to 1, linear_deadzone_threshold_int[y] [x] [pivot_idx] [cmp] is not present.
- Note—fp_linear_deadzone_threshold[y] [x] [pivot_idx] [cmp] is used to derive the value of linear dead zone threshold coeffident associated the partition with vertical coordinate y and horizontal coordinate x, pivot index pivot_idx and component cmp when coefficient_ data_type is equal to 0.
- linear_deadzone_threshold[y] [x] [pivot_idx] [cmp] specifies the fractional portion of fp_linear_deadzone_threshold[y] [x] [pivot_idx] [cmp] when coefficient_data_type is equal to 0.
- If coefficient_data_type is equal to 1, linear_deadzone_threshold[y] [x] [pivot_idx] [cmp] is used to derive the value of linear dead zone threshold coefficient associated with the partition with vertical coordinate y and horizontal coordinate x, pivot index pivot_idx and component cmp.
- If coefficient_data_type is equal to 0, the length of the linear_deadzone_threshold[y] [x] [pivot_idx] [cmp] syntax element is coefficient_log 2_denom bits.
- If coefficient_data_type is equal to 1, the length of linear_deadzone_threshold[y] [x] [pivot_idx] [cmp] is 32 bits.
- The value of linear dead zone threshold coefficient associated with the partition with vertical coordinate y and horizontal coordinate x, pivot index pivot_idx and component cmp is derived as follows:
 - If coefficient_data_type is equal to 0, the value of linear dead zone threshold coefficient is equal to fp_linear_deadzone_threshold[y] [x] [pivot_idx] [cmp]= (linear_deadzone_threshold_int[y] [x] [pivot_idx] [cmp]<<coefficient_log 2_denom)+linear_deadzone_threshold[y] [x] [pivot_idx] [cmp].
 - If coefficient_data_type is equal to 1, the value of linear dead zone threshold coefficient is equal to linear_deadzone_threshold[y] [x] [pivot_idx] [cmp].
- Note—The value of linear dead zone threshold coefficient shall be greater than or equal to zero. The value of linear dead zone maximum Dolby Vision EL signal

value coefficient shall be greater than or equal to the value of linear dead zone threshold coefficient.

A 3. Dolby Vision Display Management Metadata Bitstream Syntax

This section specifies the syntax and semantics of the Dolby Vision display management metadata bitstream. Dolby Vision display management metadata is not required for reconstructing Dolby Vision signals by the decoding process. Conforming decoders are not required to process this information. When present in the bitstream, Dolby Vision display management metadata must follow the syntax and semantics specified in A 3.1 and A 4. When the Dolby Vision display management metadata is conveyed for the application by some means other than presence within the bitstream, the representation of the Dolby Vision display management metadata is not required to use the same syntax specified in this section.

A 3.1 Dolby Vision Display Management Metadata Bis- $_{\rm 20}$ tream Syntax

TABLE A-3-1

Dolby Vision Display Management Metadata B	Dolby Vision Display Management Metadata Bistream Syntax	
	Descriptor	
Vdr_dm_data_payload () {		
affected_dm_metadata_id	ue(v)	
current_dm_metadata_id	ue(v)	
scene_refresh_flag	ue(v)	
YCCtoRGB_coef0	i(16)	
YCCtoRGB_coef1	i(16)	
YCCtoRGB_coef2	i(16)	
YCCtoRGB_coef3	i(16)	
YCCtoRGB_coef4	i(16)	
YCCtoRGB_coef5	i(16)	
YCCtoRGB_coef6	i(16)	
YCCtoRGB_coef7	i(16)	
YCCtoRGB_coef8	i(16)	
YCCtoRGB_offset0	u(32)	
YCCtoRGB_offset1	u(32)	
YCCtoRGB_offset2	u(32)	
RGBtoLMS_coef0	i(16)	
RGBtoLMS_coef1	i(16)	
RGBtoLMS_coef2	i(16)	
RGBtoLMS_coef3	i(16)	
RGBtoLMS_coef4	i(16)	
RGBtoLMS_coef5	i(16)	
RGBtoLMS_coef6	i(16)	
RGBtoLMS_coef7	i(16)	
RGBtoLMS coef8	i(16)	
signal_eotf	u(16)	
signal_eotf_param0	u(16)	
signal_eotf_param1	u(16)	
signal_eotf_param2	u(32)	
signal_bit_depth	u(5)	
signal_color_space	u(2)	
signal chroma format	u(2)	
signal_full_range_flag	u(2)	
source_min_PQ	u(12)	
source_max_PQ	u(12)	
source_diagonal	u(12) u(10)	
num_ext_blocks	u(10) ue(v)	
if(num_ext_blocks) {	uc(v)	
while(!byte_aligned())		
dm_alignment_zero_bit	f(1)	
for($i = 0$; $i < num_ext_blocks$; $i ++) {$	1(1)	
ext_metadata_block()		
ext_metadata_block()		
}		

A 3.2 Dolby Vision Display Management Extended Metadata Bistream Syntax

TABLE A-3-2

5	Dolby Vision Display Management Extended Metadata Bistream Syntax	
		Descriptor
10	<pre>Ext_metadata_block () { ext_block_length ext_block_level ext_block_level ext_block_payload(ext_block_length, ext_block_level) }</pre>	ue(v) u(8)

A 3.3 Dolby Vision Display Management Extended Metadata Payload Bistream Syntax

TABLE A-3-3

Dolby Vision Display Management Extended	
Metadata Payload Bistream Syntax	

	Descriptor
 ext_block_payload(ext_block_length, ext_	
block_level) {	
ext_block_len_bits = 8 * ext_block_length	
$ext_block_use_bits = 0$	
If $(ext_block_level = = 1)$	
min_PQ	u(12)
max_PQ	u(12)
avg_PQ	u(12)
ext_block_use_bits += 36	
}	
If $(ext_block_level == 2)$	
target_max_PQ	u(12)
trim_slope	u(12)
trim_offset	u(12)
trim_power	u(12)
trim_chroma_weight	u(12)
trim_saturation_gain	u(12)
ms_weight	i(13)
ext_block_use_bits += 85	
}	
while(ext_block_use_bits++ < ext_block_	
len_bits)	
ext_dm_alignment_zero_bit	f(1)
}	

A 4. Dolby Vision Display Management Metadata Semantics

A 4.1 Dolby Vision Display Management Metadata Bistream Semantics

- affected_dm_metadata_id indicates the id number of the Dolby Vision video frame that is relevant for this dm metadata. The value shall be in the range of 0 and 15, inclusive. If affected_dm_metadata_id is not present, it shall be inferred to be 0.
- current_dm_metadata_id indicates the id number of the current Dolby Vision video frame. The value shall be in the range of 0 and 15, inclusive. If current_dm_metadata_id is not present, it shall be inferred to be 0.
 - Note: If DM metadata is relevant for the current Dolby Vision video frame, affected_dm_metadata_id shall be set to current_dm_metadata_id. If DM metadata regards upcoming Dolby Vision video frame, affected_ dm_metadata_id shall be set to (current_dm_metadata_id+1) (mod 16). affected_dm_metadata_id shall be set to either current_dm_metadata_id or (current_ dm_metadata_id+1) (mod 16), therefore, only current and upcoming Dolby Vision video frame's metadata may be described.

- scene_refresh_flag equal to 1 specifies the video frame, which DM metadata affects, is a scene refresh point. Please refer to the DM design document for the definition of scene refresh point. The value shall be in the range of 0 and 1, inclusive. If scene_refresh_flag is not ⁵ present, it shall be inferred to be 0.
- YCCtoRGB_coef0 specifies the first coefficient of YCCtoRGB transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If YCCtoRGB_ coef0 is not present, it shall be inferred to be 8192.
- YCCtoRGB_coef1 specifies the second coefficient of YCCtoRGB transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If YCCtoRGB_coef1 is not present, it shall be inferred to be 0.
- YCCtoRGB_coef2 specifies the third coefficient of YCCtoRGB transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If YCCtoRGB_ coef2 is not present, it shall be inferred to be 12900.
- YCCtoRGB_coef3 specifies the fourth coefficient of 20 YCCtoRGB transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If YCCtoRGB_ coef3 is not present, it shall be inferred to be 8192.
- YCCtoRGB_coef4 specifies the fifth coefficient of YCCtoRGB transform matrix. The value shall be in the 25 range of -32768 to 32767, inclusive. If YCCtoRGB_ coef4 is not present, it shall be inferred to be -1534.
- YCCtoRGB_coef5 specifies the sixth coefficient of YCCtoRGB transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If YCCtoRGB_ 30 coef5 is not present, it shall be inferred to be -3836.
- YCCtoRGB_coef6 specifies the seventh coefficient of YCCtoRGB transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If YCCtoRGB_ coef6 is not present, it shall be inferred to be 8192. 35
- YCCtoRGB_coef7 specifies the eighth coefficient of YCCtoRGB transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If YCCtoRGB_ coef7 is not present, it shall be inferred to be 15201.
- YCCtoRGB_coef8 specifies the ninth coefficient of 40 YCCtoRGB transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If YCCtoRGB_ coef8 is not present, it shall be inferred to be 0.
- YCCtoRGB_offset0 specifies the first offset of YCCtoRGB transform matrix. The value shall be in the 45 range of 0 to 4294967295, inclusive. If YCCtoRG-B_offset0 is not present, it shall be inferred to be 0.
- YCCtoRGB_offset1 specifies the second offset of YCCtoRGB transform matrix. The value shall be in the range of 0 to 4294967295, inclusive. If YCCtoRG- 50 B_offset1 is not present, it shall be inferred to be 536870912.
- YCCtoRGB_offset2 specifies the third offset of YCCtoRGB transform matrix. The value shall be in the range of 0 to 4294967295, inclusive. If YCCtoRG- 55 B_offset2 is not present, it shall be inferred to be 536870912.
- RGBtoLMS_coef0 specifies the first coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_ 60 coef0 is not present, it shall be inferred to be 5845.
- RGBtoLMS_coef1 specifies the second coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_coef1 is not present, it shall be inferred to be 9702.

RGBtoLMS_coef2 specifies the third coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_ coef2 is not present, it shall be inferred to be 837.

- RGBtoLMS_coef3 specifies the fourth coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_coef3 is not present, it shall be inferred to be 2568.
- RGBtoLMS_coef4 specifies the fifth coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_ coef4 is not present, it shall be inferred to be 12256.
- RGBtoLMS_coef5 specifies the sixth coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_ coef5 is not present, it shall be inferred to be 1561.
- RGBtoLMS_coef6 specifies the seventh coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_coef6 is not present, it shall be inferred to be 0.
- RGBtoLMS_coef7 specifies the eighth coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_coef7 is not present, it shall be inferred to be 679.
- RGBtoLMS_coef8 specifies the ninth coefficient of RGBtoLMS transform matrix. The value shall be in the range of -32768 to 32767, inclusive. If RGBtoLMS_ coef8 is not present, it shall be inferred to be 15705. signal_eotf shall be set to 65535 for Ultra-HD Blu-ray.
- signal_eotf_param0 shall be set to 0 for Ultra-HD Blu-ray.
- signal_eotf_param1 shall be set to 0 for Ultra-HD Blu-ray. signal_eotf_param2 shall be set to 0 for Ultra-HD Blu-ray. signal_bit_depth indicates the bit depth of Dolby Vision signal. The value shall be in the range of 8 to 16, inclusive. If signal_bit_depth is not present, it shall be inferred to be 14.
- signal_color_space specifies the Dolby Vision signal color space. The value shall be in the range of 0 to 3, inclusive. If signal_color_space is not present, it shall be inferred to be 0. The corresponding color spaces are defined in the following table:

TABLE A-4-1

Definition of Dolby Vision signal color space Dolby		
signal_color_sp	Dace Color Space Representation	
0 1 2	YCbCr RGB IPT Reserved	

signal_chroma_format specifies the Dolby Vision signal chroma format if signal_color_space is equal to 0. The value shall be in the range of 0 to 2, inclusive. If signal_color_space is larger than 0, signal_chroma_format shall be set to 2. If signal_chroma_format is not present, it shall be inferred to be 0. The corresponding chroma formats are specified in the following table:

TABLE A-4-2

 Definition of Dolby Vision	n signal chroma format	
signal_chroma_format	Chroma Format Representation	
0	4:2:0	
1	4:2:2	
 2	4:4:4	

40

45

50

signal_full_range_flag specifies the Dolby Vision signal range. The value shall be in the range of 0 to 3, inclusive. If signal_eotf is equal to 65535, signal_full_ range_flag shall be set to 1. If signal_full_range_flag is not present, it shall be inferred to be 1. Refer to [6] for 5 the signal range naming conventions. The corresponding signal ranges are specified in the following table:

TABLE A-4-3

Definition of Dolby Vision signal full range flag		10
signal_full_range_fl	ag signal range	
0 1 2 3	Narrow range Full range SDI range Reserved	15

source_min_PQ specifies the minimum luminance value of source display in 12-bit PQ encoding.

The value shall be in the range of 0 to 4095, inclusive. If source_min_PQ is not present, it shall be inferred to be 62.

Note: the 12-bit PQ encoded luminance value is calculated as follows:

L = C/10,000

$$N = \left(\frac{c_1 + c_2 L^{m_1}}{1 + c_3 L^{m_1}}\right)^{m_2}$$

PQ = Floor((2^b - 1) × N + 0.5),

where

C denotes an optical value in cd/m^2

L denotes the corresponding normalized linear value

N denotes the corresponding nonlinear value

ml is the number 2610/4096×1/4=0.1593017578125

m2 is the number 2523/4096×128=78.84375

c2 is the number $3424/4096=0.8359375=c_3-c_2+1$

c2 is the number 2413/4096×32=18.8515625

c3 is the number 2392/4096×32=18.6875

b is the number 12

The unary function Floor yields the largest integer not greater than its argument.

PQ is the resulting digital representation

source_max_PQ specifies the maximum luminance value of source display in 12-bit PQ encoding.

- The value shall be in the range of 0 to 4095, inclusive. If source_max_PQ is not present, it shall be inferred to be 3696. 55
- source_diagonal indicates the diagonal size of source display in inch. The value shall be in the range of 0 to 1023, inclusive. If source_diagonal is not present, it shall be inferred to be 42.
- num_ext_blocks specifies the number of extended metadata blocks. The value shall be in the range of 0 to 254, inclusive. If num_ext_blocks is not present, it shall be inferred to be 0.
- dm_alignment_zero_bit shall be equal to 0. dm_align- 65 ment_zero_bit is not present if num_ext_blocks is equal to 0.

A 4.2 Dolby Vision Display Management Extended Metadata Bistream Semantics

- ext_block_length is used to derive the size of current extended metadata block payload in bytes. The value shall be in the range of 0 to 4294967295, inclusive. ext_block_length is not present if num_ext_blocks is equal to 0. If ext_block_length is not present, it shall be inferred to be 0.
- ext_block_level specifies the level of payload contained in the current extended metadata block. The value shall be in the range of 0 to 255, inclusive. The corresponding block levels are defined in the following table. If ext_block_level is not present, it shall be inferred to be 0.

TABLE A-4-4

	Definition of extended metadata block type		
	ext_block_level	extended metadata block type	
0	0 1 2 3 255	Reserved Level 1 Metadata-Content Range Level 2 Metadata-Trim Pass Reserved	

Note: If there is more than one extension block with ext_block_level equal to 1, the decoder shall only use the latest level 1 extension block transmitted in the current frame. If there are more than 16 extension blocks with ext_block_level equal to 2, the decoder shall only use the first 16 level 2 extension blocks transmitted in current frame. If there is an extension block with ext_block_level equal to reserved values, the decoder shall ignore that extension block. If there is none of extension block transmisted in current frame, level 1 and level 2 extended metadata as specified in A 4.3.

- A 4.3 Dolby Vision Display Management Extended Metadata Payload Semantics
 - min_PQ specifies the minimum luminance value of current scene in 12-bit PQ encoding. The value shall be in the range of 0 to 4095, inclusive. If min_PQ is not present, it shall be inferred to be equal to the value of source min PQ.
 - max_PQ specifies the maximum luminance value of current scene in 12-bit PQ encoding. The value shall be in the range of 0 to 4095, inclusive. If max_PQ is not present, it shall be inferred to be equal to the value of source_max_PQ.
 - avg_PQ specifies the midpoint luminance value of current scene in 12-bit PQ encoding. The value shall be in the range of 0 to 4095, inclusive. If avg_PQ is not present, it shall be inferred to be equal to the value of (source_ min_PQ+source_max_PQ)/2.
 - target_max_PQ specifies the maximum luminance value of a target display in 12-bit PQ encoding. The value shall be in the range of 0 to 4095, inclusive. If target_ max_PQ is not present, it shall be inferred to be equal to the value of source_max_PQ.
 - Note: There are more than one extension block with ext_block_level equal to 2, those blocks shall have no duplicated target_max_PQ.
 - trim_slope specifies the slope metadata. The value shall be in the range of 0 to 4095, inclusive. If trim_slope is not present, it shall be inferred to be 2048. Note that the 12-bit slope value is calculated as follows: trim_slope= $(S+0.5)\times4096$
 - trim_offset specifies the offset metadata. The value shall be in the range of 0 to 4095, inclusive.

35

If trim_offset is not present, it shall be inferred to be 2048. Note that the 12-bit offset value is calculated as follows:

trim_offset=(0+0.5)×4096

- trim_power specifies the power metadata. The value shall be in the range of 0 to 4095, inclusive.
- If trim_power is not present, it shall be inferred to be 2048. Note that the 12-bit power value is calculated as follows:

trim_power=(P+0.5)×4096

trim_chroma_weight specifies the chroma weight metadata. The value shall be in the range of 0 to 4095, inclusive. If trim_chroma_weight is not present, it shall be inferred to be 2048. Note that the 12-bit chroma ¹⁵ weight value is calculated as follows:

trim_chroma_weight=(CW+0.5)×4096

- trim_saturation_gain specifies the saturation gain metadata. The value shall be in the range of 0 to 4095, 20 inclusive. If trim_saturation_gain is not present, it shall be inferred to be 2048.
- Note that the 12-bit saturation gain value is calculated as follows:

trim_saturation_gain=(SG+0.5)×4096

ms_weight specifies the multiscale weight metadata. The value shall be in the range of -1 to 4095, inclusive. If ms_weight is not present, it shall be inferred to be 2048. Note that the 12-bit multiscale weight value is calculated as follows:

ms_weight=(MS+1.0)×2048

Note: If ms_weight is equal to -1, it means the multiscale weight value shall be overridden by the local settings. ext_dm_alignment_zero_bit shall be equal to 0.

REFERENCES

The following literature supplements the information in this document and each one is incorporated by reference in 40 its entirety for all purposes:

- ITU-R Recommendation BT.709, Parameter Values for the HDTV Standards for Production and International Program Exchange, available from http://www.itu.int
- [2] ITU-R Recommendation BT.2020, Parameter Values for Ultra-High-Definition Television Systems for Production and International Program Exchange, available from http://www.itu.int
- [3] ITU-T H.265 (October/2014), *High-Efficiency Video* 50 *Coding*, available at http://www.itu.int
- [4] High-Definition Multimedia Interface[™] Specification, version 1.4b, available from http://www.hdmi.org
- [5] High-Definition Multimedia Interface[™] Specification, version 2.0, available from http://www.hdmi.org 55
- [6] SMPTE ST 2084: 2014, High Dynamic Range Electro-Optical Transfer Function of Mastering Reference Displays, Aug. 16, 2014
- [7] SMPTE ST 2086: 2014, Mastering Display Color Volume Metadata Supporting High Luminance and 60 Wide Color Gamut Images, Oct. 13, 2014
- [8] CEA-861-F, A DTV Profile for Uncompressed High Speed Digital Interfaces.
- [9] Audio Visual Application Format Specifications for BD-ROM Version 3.0, White paper Blu-Ray Disc 65 Read-only Format (Ultra HD Blu-ray), Blu-Ray Disc Association, July 2015

- [10] ISO/IEC 13818-1:2013, Information Technology— Generic Coding of Moving Pictures and Associated Audio Information: Systems, available from www.iso.org
- [11] U.S. patent application Ser. No. 14/364,979, filed on Jun. 12, 1014, "Specifying Visual Dynamic Range Coding Operations and Parameters," by S. Qu et al., published as U.S. Patent Application Pub. No. 2014/ 0341305.
- [12] A. Ballestad and A. Kostin, "Method and Apparatus for Image Data Transformation," U.S. Pat. No. 8,593, 480.

EXAMPLE COMPUTER SYSTEM IMPLEMENTATION

Embodiments of the present invention may be implemented with a computer system, systems configured in electronic circuitry and components, an integrated circuit (IC) device such as a microcontroller, a field programmable gate array (FPGA), or another configurable or programmable logic device (PLD), a discrete time or digital signal processor (DSP), an application specific IC (ASIC), and/or 25 apparatus that includes one or more of such systems, devices or components. The computer and/or IC may perform, control, or execute instructions relating to layered representation and decoding of images with enhanced dynamic range, such as those described herein. The computer and/or IC may compute any of a variety of parameters or values that relate to layered representation and decoding of images with enhanced dynamic range described herein. The image and video embodiments may be implemented in hardware, software, firmware and various combinations thereof.

Certain implementations of the invention comprise computer processors which execute software instructions which cause the processors to perform a method of the invention. For example, one or more processors in a display, an encoder, a set top box, a transcoder or the like may implement methods related to layered representation and decoding of images with enhanced dynamic range as described above by executing software instructions in a program memory accessible to the processors. The invention may also be provided in the form of a program product. The program product may comprise any non-transitory medium which carries a set of computer-readable signals comprising instructions which, when executed by a data processor, cause the data processor to execute a method of the invention. Program products according to the invention may be in any of a wide variety of forms. The program product may comprise, for example, physical media such as magnetic data storage media including floppy diskettes, hard disk drives, optical data storage media including CD ROMs, DVDs, electronic data storage media including ROMs, flash RAM, or the like. The computer-readable signals on the program product may optionally be compressed or encrypted.

Where a component (e.g. a software module, processor, assembly, device, circuit, etc.) is referred to above, unless otherwise indicated, reference to that component (including a reference to a "means") should be interpreted as including as equivalents of that component any component which performs the function of the described component (e.g., that is functionally equivalent), including components which are not structurally equivalent to the disclosed structure which performs the function in the illustrated example embodiments of the invention.

EQUIVALENTS, EXTENSIONS, ALTERNATIVES AND MISCELLANEOUS

Example embodiments that relate to the efficient layered representation and decoding of images with enhanced 5 dynamic range are thus described. In the foregoing specification, embodiments of the present invention have been described with reference to numerous specific details that may vary from implementation to implementation. Thus, the sole and exclusive indicator of what is the invention, and is 10 intended by the applicants to be the invention, is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Any definitions expressly set forth herein for terms contained in such claims shall govern the meaning of such 15 terms as used in the claims. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. 20

What is claimed is:

1. A non-transitory processor readable medium having stored thereon an encoded bitstream, the encoded bitstream comprising:

- an encoded picture section comprising an encoding of a 25 base layer bitstream comprising a sequence of base layer images, and an encoding of an enhancement layer bitstream comprising a sequence of enhancement layer images; and
- a signaling section including an encoding of reference ³⁰ processing data, wherein the reference processing data comprise:
 - a reference processing unit (RPU) data header; RPU payload data;
 - an RPU-alignment-zero-bit flag equal to zero; and
 - a cyclic redundancy check (CRC) parameter to determine in a decoder the accuracy of the reference processing data when generating an output video signal based on the base layer bitstream, the enhancement layer bitstream, and the reference pro- 40 cessing data.

2. The processor readable medium of claim 1, wherein the reference processing data further comprise display management payload data.

3. The processor readable medium of claim **1**, wherein the 45 RPU payload data comprise RPU prediction mapping data and RPU non-linear-quantizer (NLQ) data.

4. The processor readable medium of claim **1**, wherein the RPU data header comprises an RPU type flag denoted as rpu_type flag, which specifies a type of RPU processing, and rpu_type=2 denotes Blu-ray high-dynamic range decoding of the encoded bitstream.

5. The processor readable medium of claim **1**, wherein the RPU data header comprises a use_prev_vdr_rpu_flag flag which, when set to 1 specifies that current reference processing data is generated in the decoder from previously received reference processing data and when set to 0 specifies that the current reference processing data are explicitly received and instructs the decoder to generate a new reference processing data ID.

6. The processor readable medium of claim **1**, wherein the RPU data header comprises a a vdr_dma_metadata_present_flag flag, which when set to 0 specifies that no display management payload data is present, and when set to 1 specifies that display management payload data is present according to a vdr_dm_data_payload0 syntax structure.

7. The processor readable medium of claim 1, wherein the RPU data header comprises an array of num_pivots_minus2 [cmp] which specifies the number of pivot points minus 2 to be used by the decoder to perform a piecewise mapping process for color component cmp when decoding the encoded bitstream.

8. The processor readable medium of claim 7, wherein the RPU data header further comprises values pred_pivot_value [cmp] [i] used to derive values of pivot_value[cmp] [i] of the i-th pivot point for the color component cmp.

9. The processor readable medium of claim **1**, wherein the RPU payload data comprise values of mapping_idc[0] [0] [cmp] [pivot_idx] which specify a mapping method used by the decoder for color component cmp and dynamic range identified by pivot_idx, wherein mapping_idc[0] [0] [cmp] [pivot_idx]=0 specifies a polynomial mapping and mapping_idc[0] [0] [cmp] [pivot_idx]=1 specifies a multivariate multiple regression mapping.

10. The processor readable medium of claim **9**, wherein the RPU payload data further comprise values mapping_param_pred_flag[0] [0] [cmp] [pivot_idx] which specify whether mapping parameters associated with mapping_idc [0] [0] [cmp] [pivot_idx] are explicitly transmitted or predicted from previous reference processing unit data.

* * * * *